Режимы контактной точечной сварки. Настройка контактных машин

В.Г. Квачев (Институт кибернетики АН УССР)

Контактная точечная сварка - один из самых производительных способов соединения металлов. В связи с широким использованием ее в массовом производстве и отсутствием совершенных методов неразрушающего контроля особое значение приобретает строгое соблюдение требований, предъявляемых к технологическому процессу на этапах подбора режима, подготовки материалов под сварку, сборки деталей и т.д. При этом подбор оптимального режима сварки определяет воспроизводимость заданного качества соединений. Нетрудно показать, что при прочих равных условиях и постоянной колеблемости основных параметров режима функция стабильности качества y = f ( x 1, x 2… x n ) - параметры режима, зависит от соотношения этих параметров и имеет максимум в области оптимальных режимов сварки.

При точечной сварке материала определенной толщины режим задается временными зависимостями сварочного тока I св (t) и усилия сжатия F c ж ( t ), а также размерами и формой контактной поверхности электродов.

Рядом исследователей предложены формулы для расчета тока, как основного параметра, обусловливающего выделение тепла при сварке . Однако попытки их практического использования сопряжены с известными трудностями, вызванными сложностью расчетов и несовпадением полученных данных с практическими результатами . В последнее время для определения режимов сварки применяют теорию подобия или метод обобщенных переменных .

Однако существующие аналитические методы позволяют лишь предварительно оценить область изменения параметров режима, окончательный выбор которых требует существенного экспериментального корректирования.

Результаты корректирования расчетных и табличных значений параметров практически всецело зависят от квалификации технолога- сварщика, его опыта и методики, используемой при подборе режима. Естественно, такой подход привносит субъективный фактор, что зачастую приводит к непроизводительным затратам времени и материалов.

Выбор и корректирование режимов сварки - типичная задача оптимизации, т.е. нахождения наилучших в определенном смысле значений параметров режима. При заданном критерии качества (обычно это диаметр ядра (d я или разрывное усилие) задача оптимизации заключается в определении параметров, принадлежащих некоторой области допустимых значений и обеспечивающих экстремум выбранного критерия.

При наличии аналитической зависимости между управляющими параметрами режима и критерием качества решение этой задачи не составляет особого труда. Однако недостаточная изученность процесса сварки, большое количество параметров и случайный характер возмущений не позволяют получить достаточно точного аналитического описания. Поэтому оптимальные параметры режима могут быть определены с помощью методов математического планирования экспериментов, основанных на обработке данных, которые получены непосредственно на действующем объекте. При этом в отличие от аналитического исследования осуществляется локальное изучение поверхности отклика по результатам некоторого набора экспериментов, В результате ряда последовательных процедур изучения поверхности отклика получают его экстремальное значение, причем эксперименты планируются таким образом, чтобы минимизировать количество опытов и время, затрачиваемое на поиск экстремума. Обычно наиболее эффективно использование факторных методов планирования, получивших в последнее время широкое распространение при исследовании технологических процессов.

Для решения поставленной задачи был применен метод последовательного симплекс-планирования . Основная идея его заключается в том, что поверхность отклика в некоторой области аппроксимируется линейным приближением с помощью минимального числа экспериментальных точек, образующих симплекс, и движение по этой поверхности в поисках оптимального значения осуществляется путем отбрасывания вершины симплекса с меньшим откликом и построения новой, являющейся зеркальным отображением отброшенной. Это позволяет совместить процесс из учения поверхности отклика с перемещением по ней. Достигнув области экстремума, симплекс начинает вращение вокруг вершины максимальным откликом. Это свидетельствует о том, что все остальные вершины, определяемые соотношением исходных параметров, дают меньший по сравнению с дентальной выход и используются для определения окончания процесса оптимизации.

Более подробное описание алгоритма метода симплекс-планирования будет рассмотрено ниже. Здесь же необходимо отметить основные достоинства, обусловившие выбор этого метода для решения задачи:

1) использование его не требует специальных математических знаний. Вычисления крайне просты, все приемы формализованы, поэтому метод пригоден как для ручной, так для машинной реализации;

2) направление движения определяется не точными количественными значениями отклика, а лишь соотношением между ними. Это особенно важно в случае затруднений при измерении показателя качества сварки;

3) ввиду того, что перемещение симплекса основывается на качественной информации не нужно предъявлять слишком высокие требования к точности поддержания и измерения значений параметров, соответствующих координатам вершин. Это позволяет использовать метод непосредственно в производственных условиях, где измерение и поддержание значений параметров с высокой точностью затруднены.

Ниже на примере выбора оптимального режима точечной сварки материала Д16АМ мм на низкочастотной машине показана методика применения симплекс-планирования. Эксперимент планировался для двух независимых переменных режима: максимального значения импульса сварочного тока I св max и усилия сжатия электродов F сж . Остальные параметры (время сварки, диаметр электро да d э радиус его заточки R з и т.д.) поддерживались на заданном уровне.

На основании данных таблиц рекомендованных режимов выбирались диапазон изменения каждой из переменных: 25 кА I св max 35 кА, 280 кг сж 400 кг – интервал варьирования ; величина кА, кг.

В качестве критерия оптимизации принимали диаметр ядра сварной точки. Переменные режима измерялись с помощью специализированной аппаратуры .

Симплексом, как известно, называется простейшая выпуклая геометрическая фигура, обладающая минимальным количеством вершин n +1, где n - число исследуемых переменных. В рассматриваемом случае при n =2 регулярный симплекс представляет собой равносторонний треугольник, координаты вершин которого в пространстве исследуемых переменных определяют план опытов.

Начальный симплекс строился для режима I св max = 175. F сж = 120 . Ввиду того что предварительная оценка направления движения затруднена, ориентация первоначального симплекса произвольна. Поэтому расположим его сторону А 1 А 2 параллельно оси тока (рисунок, а). Учитывая выбранные интервалы варьирования параметров и пользуясь матрицей планирования , строим начальный симплекс A 1 A 2 A 3 . Результаты опытов в вершинах симплекса (табл. 1) показали, что минимальное значение диаметра ядра дает режим, определяемый точкой А 2 . Поэтому для осуществления движения в направлении увеличения отклика необходимо отбросить точку А 2 и на оставшейся стороне А 1 –А 3 достроить новый симплекс путем добавления точки А 4 .

Координаты новой точки определяются следующим соотношением:

A ji =2/n (A 1i + A 2i + …+ A ji + …+ A k +1. i ) - A ji

i =1, 2, 3,…, k .

Здесь первый индекс обозначает номер вершины симплекса, а второй - ее координату: j - номер вершины с минимальным откликом. Для рассматриваемого случая координаты точки А 4 вычисляются так:

A 4 (F сж )=2/2 [ A 1 (F сж )+ A 3 (F сж )]– A 2 (F сж );

A 4 (I св max )=2/2 –A 2 (I св max ).

После проведения эксперимента в точке A 4 производится сравнительная оценка диаметра ядра для режимов A 1 , A 3 , A 4 . Точка симплекса с минимальным выходом отбрасывается и описанная процедура повторяется.

Рис. Траектория движения симплекса при определении оптимального режима сварки (d э =20мм, R з =75мм)

А - сплава Д16АМ; б – сплава АМг6; в – нержавеющей стали 1Х18Н9Т

Как видно из рисунка и табл. 1, после достижения симплексом точки А 8 поступательное движение прекратилось.

Таблица 1

№ опыта

Симплекс

Точка, в которой проводится опыт

Координаты вершин

d я , мм

I св max

F сж

A 1 A 2 A 3

A 1 A 2 A 3

A 1 A 2 A 3

A 1 A 3 A 4

A 3 A 4 A 5

A 4 A 5 A 6

A 5 A 6 A 7

A 6 A 7 A 8

A 6 A 8 A 9

A 8 A 9 A 10

A 10

A 8 A 10 A 11

A 11

A 8 A 11 A 12

A 12

Примечание. В опытах № 10, 11 произошел выплеск.

При сварке на режиме, определяемом точкой А 10 , диаметр ядра увеличился, но при этом произошел выплеск. Следующий симплекс был построен на стороне А 8 …А 10 , и эксперимент, проведенный в точке А 11 , также привел к выплеску. Завершающий опыт в вершине А 12 дал существенно меньшие размеры диаметра ядра по сравнению с режимом, определяемым точкой А 8 .

После завершения цикла вращения симплекса вокруг вершины А 8 оказалось, что режимы A 9 , A 10 , A 11 , A 12 дают меньший диаметр ядра либо приводят к выплескам.

Для уточнения координат оптимального режима в точке А 8 был проведен ряд опытов, которые дали хорошую воспроизводимость результатов. Таким образом, в качестве оптимального был определен режим, соответствующий вершине А 8 с координатами I св max =190, F сж =104.

Аналогичный эксперимент по выбору оптимального режима сварки был проведен также для материалов АМг6 и 1Х18Н9Т мм . Траектории движения симплексов для них приведены на рис. б и в. В табл. 2 указаны оптимальные режимы в натуральных единицах.

Таблица 2

Свариваемый материал

I св max , к А

F сж , кг

Д16АМ

31,2

АМг6

17,6

1Х18Н9Т

Литература

1. А.С. Гельман, Технология и оборудование контактной сварки, Машгиз, М., 1960.

2. К.А. Кочергин, Вопросы теории контактной сварки, Машгиз, М, - Л., 1950.

2. Г.Ф. Скакун, А.А. Чакалаев, К вопросу расчета некоторых параметров режима точечной сварки легких сплавов, сб. «Надежность сварных соединений и конструкций», «Машиностроение», М, 1967.

3. В.К . Лебедев, Ю.Д. Яворский, Применение критериев подобия для определения режимов сварки, «Автоматическая сварка», № 8, 1960.

4. В.В. Налимов, Н.А. Чернова, Статистические методы планирования экстремальных экспериментов, «Наука», М., 1965.

5. Б.Е. Патон и др., Автоматизация экспериментальных исследований сварочных процессов, «Автоматическая сварка», № 6, 1970.

6. П.В. Ермуратский, Симплексный метод оптимизации, «Труды МЭИ», вып. 67, 1966.

Само название контактная точечная сварка говорит о том, что детали прочно соединяются между собой точкой или точками в результате воздействия электрического тока и соответствующего усилия сжатия.

Таким способом можно соединять как самые тонкие детали, имеющие толщину до 0,02 мкм, так и детали толщиной до 20 мм, изготовленные из различных металлов и сплавов, а также их сочетаний. Сваривают этим видом сварки проволоку, прутки круглого, крестообразного сечения и др. профили. Чаще всего сваривают конструкции из мягкой и коррозионно-стойкой стали, а также все легкие сплавы и латунь.

Точечная сварка широко распространена при изготовлении конструкции в электронной промышленности, в судо-, самолето-, автомобилестроении, сельском хозяйстве, других отраслях промышленности и быту. Сварка применяется при рихтовке и сварке кузовов машин, при изготовлении шкафов и корпусов, которые применяются в электротехнической промышленности, производстве изделий каркасной формы, изготовлении посуды.

Ни одна станция технического обслуживания и небольшие мастерские по обслуживанию автомобилей не могут существовать, не имея в своем арсенале машины для точечной сварки.

Этапы выполнения точечной сварки

К ним относятся:

  • подготовка кромок изделия под сварку;
  • совмещение деталей в нужном положении и помещении их между электродами;
  • нагрев изделия до состояния пластичности;
  • деформирование.

Подготовка кромок под сварку заключается в зачистке их до металлического блеска и обезжиривания. Детали должны плотно прилегать друг к другу в процессе осуществления сварки. Для этого используют ручные тиски или струбцины.

К преимуществам относят:

  • высокую скорость (некоторые аппараты позволяют совершать 600 соединений в минуту);
  • отсутствие деформаций и короблений;
  • нет необходимости использовать сварщика с высокой квалификацией;
  • экономичность;
  • возможность автоматизации сварочного процесса.

К недостаткам можно отнести большую трудоемкость сварки, невозможность получить герметичное соединение и невозможность применить этот вид сварки для нагруженных и силовых изделий.

Устройство сварочной машины

Основными частями любой сварочной машины для точечной сварки являются:

  • трансформатор тока (вторичная обмотка у него подсоединяется к электродам);
  • специальный механизм, предназначенный для сжатия электродов;
  • сварочный зажим;
  • устройство, позволяющее включать и выключать сварочный ток;
  • шкаф управления (регулирует силу тока и время его протекания).

У сварочных аппаратов небольшой мощности шкаф управления может отсутствовать, тогда время пропускания тока и необходимое усилие сжатия электродов регулирует сам сварщик, полагаясь на свой опыт и навыки.

Обычно у сварочных аппаратов регулируются следующие основные параметры:

  • сила тока;
  • время прохождения тока;
  • усилие сжатия электродов.

В процессе работы на любом сварочном аппарате необходимо следить за состоянием электродов. Диаметр электрода не должен увеличиваться. Это приводит к уменьшению концентрации тепла в месте соединения деталей. Диаметр электрода должен быть таким же, как и полученная впоследствии сварочная точка. Плоскость контакта электрода с металлом зачищают плоским напильником или шлифовальной шкуркой.

Необходимо помнить, что электроды изготавливаются из специальных материалов — меди и жаропрочных бронз, которые способны сохранять размеры и форму при высоких температурах (до 600 0С), однако в процессе эксплуатации они быстро изнашиваются и теряют свою форму. Поэтому надо не только следить за состоянием формы электродов, но и вовремя производить их замену.

Все аппараты можно классифицировать по следующим основным признакам:

  • назначению;
  • расположению электродов;
  • передвижению;
  • способу автоматизации.

По назначению аппараты делят на машины общего назначения и предназначенные для проведения конкретных работ (пециализированные). Аппараты общего назначения применяются в бытовых и производственных целях при выполнении разовых работ. Они характеризуются небольшими размерами и весом, легко транспортируются и работают, как правило, от бытовой электрической сети.

Специализированные аппараты используются для производственных целей при крупносерийном и массовом производстве однотипных изделий. Это позволяет максимально увеличить производительность. Характеризуются большими габаритами, питание у них часто осуществляется от электрической сети 380 В. К ним относятся специальные споттеры и машины, предназначенные специально для производства кузовных работ.

Электроды у машин могут располагаться следующим образом:

  • друг напротив друга;
  • рядом друг с другом (параллельно).

В первом случае электроды с двух сторон одновременно сжимают свариваемые детали, а во втором – электроды опираются с одной стороны деталей. Такие клещи называются двухточечными.

По способу передвижения аппараты могут быть 3 видов:

  • стационарные;
  • подвесные;
  • мобильные.

В стационарных машинах для точечной сварки детали перемещают под машину, а в подвесных и мобильных происходит установка аппарата в положение сварки. Обычно в ремонтных целях используют сварочные клещи. Они имеют небольшие размеры и позволяют выполнять точечную сварку по месту проведения ремонтных работ.

По способу автоматизации оборудование может быть:

  • ручным;
  • автоматическим.

Основным параметром при выборе необходимой для тех или иных целей машины является сила сварочного тока и длина рычагов с электродами. Именно это определяет, какую толщину деталей можно сваривать, какой металл и с какими габаритами. Обычно производитель это указывает в паспорте на конкретную модель аппарата для точечной сварки. Простейший аппарат для точеной сварки можно вполне .

Порядок работы аппаратов точечной сварки

Детали, подлежащие соединению, накладываются внахлестку друг на друга. Потом они устанавливаются между электродами и закрепляются. Далее происходит пропускание токабольшой силы (около 5000 А) и небольшого напряжения (4В).Эти значения зависят от товщины свариваемых деталей. Это вызовет быстрый нагрев металла в месте контакта на всю толщину деталей. Произойдет его плавление.

Нагрев осуществляется подача импульса сварочного тока. Его длительность не более 0,1 сек, а то и меньше, в зависимости от условий сварки. За это время он расплавит металл в зоне соединения и образует жидкий металл. После его снятия еще некоторое время детали удерживаются под давлением. Это делается для того, чтобы металл остыл и закристаллизовался. Прижатие деталей происходит в момент действия сварочного импульса. Это позволяет предотвратить выплеск металла из зоны образования точки.

Дефекты контактной точечной сварки

Все дефекты, которые могут возникнуть при контактной точечной сварке можно разделить на видимые и невидимые (внутренние). К видимым дефектам относят:

  • трещины;
  • прожоги;
  • разрывы металла;
  • вырывы точек;
  • темную поверхность точек;
  • вмятины;
  • неправильную форма точек.

К невидимым дефектам относят:

  • непровар:
  • внутренние трещины, выплески, раковины и поры.

Этому способствует неправильно подобранная технология сварки, неправильная подготовка металла к сварке, недостаточное охлаждение электродов в процессе сваривания, износ поверхности электродов и другие факторы, которые негативно сказываются на качестве изделия. Выявить наружные дефекты можно сразу, а внутренние только специальными методами неразрушающего контроля, которые применяются на производствах, производящих изделия ответственного назначения.

В магазинах, включая и интернет-магазины, можно приобрести аппараты от ведущих мировых и отечественных производителей сварочного оборудования.

Особой популярностью и хорошим спросом пользуются аппараты компании G.I.Kraft из Германии, сварочные аппараты BlueWeld, производимые в Италии, компании Forsage из Украины, мобильные аппараты «КРАБ» производителя из Украины и другие. Все они отличатся прекрасными качественными характеристиками, инновационными технологиями изготовления и высокой производительностью. Огромный ассортиментный ряд позволяет выбрать аппарат под конкретные нужды с превосходными характеристиками, который прослужит длительное время.


Точечная сварка является разновидностью контактной сварки. При этом способе, нагрев металла до температуры его плавления осуществляется теплом, которое образуется при прохождении большого электрического тока от одной детали к другой через место их контакта. Одновременно с пропусканием тока и некоторое время спустя после него производится сжатие деталей, в результате чего происходит взаимное проникновение и сплавление нагретых участков металла.

Особенностями контактной точечной сварки являются: малое время сварки (от 0,1 до нескольких секунд), большой сварочный ток (более 1000А), малое напряжение в сварочной цепи (1-10В, обычно 2-3В), значительное усилие сжимающее место сварки (от нескольких десятков до сотен кг), небольшая зона расплавления.

Точечную сварку чаще всего применяют для соединения листовых заготовок внахлестку, реже - для сварки стержневых материалов. Диапазон толщин, свариваемых ею, составляет от нескольких микрометров до 2-3 см, однако чаще всего толщина свариваемого металла варьируется от десятых долей до 5-6 мм.

Кроме точечной, существуют и другие виды контактной сварки (стыковая, шовная и пр.), однако точечная сварка является наиболее распространенной. Она применятся в автомобилестроении, строительстве, радиоэлектронике, авиастроении и многих других отраслях. При строительстве современных лайнеров, в частности, производится несколько миллионов сварных точек.

Заслуженная популярность

Большая востребованность точечной сварки обусловлена целым рядом достоинств, которыми она обладает. В их числе: отсутствие необходимости в сварочных материалах (электродах, присадочных материалах, флюсах и пр.), незначительные остаточные деформации, простота и удобство работы со сварочными аппаратами, аккуратность соединения (практическое отсутствие сварного шва), экологичность, экономичность, подверженность легкой механизации и автоматизации, высокая производительность. Автоматы точечной сварки способны выполнять до нескольких сотен сварочных циклов (сварных точек) в минуту.

К недостаткам можно отнести отсутствие герметичности шва и концентрацию напряжений в точке сварки. Причем последние могут быть значительно уменьшены или вообще устранены особыми технологическими приемами.

Последовательность процессов при контактной точечной сварке

Весь процесс точечной сварки можно условно разделить на 3 этапа.
  • Сжатие деталей, вызывающее пластическую деформацию микронеровностей в цепочке электрод-деталь-деталь-электрод.
  • Включение импульса электрического тока, приводящего к нагреву металла, его расплавлению в зоне соединения и образованию жидкого ядра. По мере прохождения тока ядро увеличивается по высоте и диаметру до максимальных размеров. Происходит образование связей в жидкой фазе металла. При этом продолжается пластическая осадка контактной зоны до окончательного размера. Сжатие деталей обеспечивает образование уплотняющего пояса вокруг расплавленного ядра, который препятствует выплеску металла из зоны сварки.
  • Выключение тока, охлаждение и кристаллизация металла, заканчивающаяся образованием литого ядра. При охлаждении объем металла уменьшается, и возникают остаточные напряжения. Последние являются нежелательным явлением, с которым борются различными способами. Усилие, сжимающее электроды, снимается с некоторой задержкой после отключения тока. Это обеспечивает необходимые условия для лучшей кристаллизации металла. В некоторых случаях в заключительной стадии контактной точечной сварки рекомендуется даже увеличивать усилие прижима. Оно обеспечивает проковывание металла, устраняющее неоднородности шва и снимающее напряжения.

При следующем цикле все повторяется снова.

Основные параметры контактной точечной сварки

К основным параметрам контактной точечной сварки относятся: сила сварочного тока (I СВ), длительность его импульса (t СВ), усилие сжатия электродов (F СВ), размеры и форма рабочих поверхностей электродов (R - при сферической, d Э - при плоской форме). Для лучшей наглядности процесса эти параметры представляются в виде циклограммы, отражающей их изменение во времени.

Различают жесткий и мягкий режимы сварки. Первый характеризуется большим током, малой продолжительностью токового импульса (0,08-0,5 секунд в зависимости от толщины металла) и большой силой сжатия электродов. Его применяют для сварки медных и алюминиевых сплавов, обладающих большой теплопроводностью, а также высоколегированных сталей для сохранения их коррозионной стойкости.

При мягком режиме производится более плавный нагрев заготовок относительно небольшим током. Продолжительность сварочного импульса составляет от десятых долей до нескольких секунд. Мягкие режимы показаны для сталей, склонных к закалке. В основном именно мягкие режимы используются для контактной точечной сварки в домашних условиях, поскольку мощность аппаратов в этом случае может быть ниже, чем при жесткой сварке.

Размеры и форма электродов . С помощью электродов осуществляется непосредственный контакт сварочного аппарата с деталями, подвергаемыми сварке. Они не только подводят ток в зону сварки, но и передают сжимающее усилие и отводят тепло. Форма, размеры и материал электродов являются важнейшими параметрами аппаратов для точечной сварки.

В зависимости от их формы электроды подразделяются на прямые и фигурные. Наиболее распространены первые, они применяются для сварки деталей, допускающих свободный доступ электродов в свариваемую зону. Их размеры стандартизованы ГОСТом 14111-90, который устанавливает такие диаметры электродных стержней: 10, 13, 16, 20, 25, 32 и 40 мм.

По форме рабочей поверхности существуют электроды с плоскими и сферическими наконечниками, характеризуемыми соответственно значениями диаметра (d) и радиуса (R). От величины d и R зависит площадь контакта электрода с деталью, влияющая на плотность тока, давление и величину ядра. Электроды со сферической поверхностью имеют большую стойкость (способны сделать больше точек до переточки) и менее чувствительны к перекосам при установке, чем электроды с плоской поверхностью. Поэтому со сферической поверхностью рекомендуется изготовлять электроды, используемые в клещах, а также фигурные электроды, работающие с большими прогибами. При сварке легких сплавов (например, алюминия, магния) применяют только электроды со сферической поверхностью. Использование для этой цели электродов с плоской поверхностью приводит к чрезмерным вмятинам и подрезам на поверхности точек и повышенным зазорам между деталями после сварки. Размеры рабочей поверхности электродов выбирают в зависимости от толщины свариваемых металлов. Следует отметить, что электроды со сферической поверхностью могут быть использованы практически во всех случаях точечной сварки, электроды же с плоской поверхностью очень часто неприменимы.


* - в новом ГОСТе вместо диаметра 12 мм, введено 10 и 13 мм.

Посадочные части электродов (места соединяемые с электродержателем) должны обеспечивать надежную передачу электрического импульса и усилие прижима. Часто они выполняются в виде конуса, хотя существуют и другие виды соединений - по цилиндрической поверхности или резьбе.

Очень важное значение имеет материал электродов, определяющий их электрическое сопротивление, теплопроводность, термостойкость и механическую прочность при высоких температурах. В процессе работы электроды нагреваются до больших температур. Термоциклический режим работы, совместно с механической переменной нагрузкой, вызывает повышенный износ рабочих частей электродов, результатом чего становится ухудшение качества соединений. Чтобы электроды были в состоянии противостоять тяжелым условиям работы, их делают из специальных медных сплавов, обладающих жаропрочностью и высокой электро- и теплопроводностью. Чистая медь также способна работать в качестве электродов, однако она обладает низкой стойкостью и требует частых переточек рабочей части.

Сила сварочного тока . Сила сварочного тока (I СВ) - один из основных параметров точечной сварки. От нее зависит не только количество тепла, выделяющегося в зоне сварки, но и градиент его увеличения по времени, т.е. скорость нагрева. Напрямую зависят от I СВ и размеры сварного ядра (d, h и h 1), увеличивающиеся пропорционально увеличению I СВ.

Необходимо отметить, что ток, который протекает через зону сварки (I СВ), и ток, протекающий во вторичном контуре сварочной машины (I 2), различаются между собой - и тем больше, чем меньше расстояние между сварными точками. Причиной этого является ток шунтирования (I ш), протекающий вне зоны сварки - в том числе и через ранее выполненные точки. Таким образом, ток в сварочной цепи аппарата должен быть больше сварочного тока на величину тока шунтирования:

I 2 = I СВ + I ш

Для определения силы сварочного тока можно пользоваться разными формулами, которые содержат различные эмпирические коэффициенты, полученные опытным путем. В случаях, когда точное определение сварочного тока не требуется (что и бывает чаще всего), его значение принимают по таблицам, составленным для разных режимов сварки и различных материалов.

Увеличение времени сварки позволяет сваривать токами намного меньшими, чем приведенные в таблице для промышленных аппаратов.

Время сварки . Под временем сварки (t СВ) понимают продолжительность импульса тока при выполнении одной сварной точки. Вместе с силой тока, оно определяет количество теплоты, которое выделяется в зоне соединения при прохождении через нее электрического тока.

При увеличении t СВ повышается проплавление деталей и растут размеры ядра расплавленного металла (d, h и h 1). Одновременно с этим увеличивается и теплоотвод из зоны плавления, разогреваются детали и электроды, происходит рассеивание тепла в атмосферу. При достижении определенного времени может наступить состояние равновесия, при котором вся подводимая энергия отводится из зоны сварки, не увеличивая проплавление деталей и размер ядра. Поэтому увеличение t СВ целесообразно только до определенного момента.

При точном расчете продолжительности сварочного импульса должны учитываться многие факторы - толщина деталей и размер сварной точки, температура плавления свариваемого металла, его предел текучести, коэффициент аккумуляции тепла и пр. Есть сложные формулы с эмпирическими зависимостями, по которым при необходимости осуществляют расчет.

На практике чаще всего время сварки принимают по таблицам, корректируя при необходимости принятые значения в ту или иную сторону в зависимости от полученных результатов.

Усилие сжатия . Усилие сжатия (F СВ) оказывает влияние на многие процессы контактной точечной сварки: на пластические деформации, происходящие в соединении, на выделение и перераспределение тепла, на охлаждение металла и его кристаллизацию в ядре. С увеличением F СВ увеличивается деформация металла в зоне сварки, уменьшается плотность тока, снижается и стабилизируется электрическое сопротивление на участке электрод-детали-электрод. При условии сохранения размеров ядра неизменными, прочность сварных точек с ростом усилия сжатия возрастает.

При сварке на жестких режимах применяют более высокие значения F СВ, чем при мягкой сварке. Это связано с тем, что при увеличении жесткости возрастает мощность источников тока и проплавление деталей, что может приводить к образованию выплесков расплавленного металла. Большое усилие сжатия как раз и призвано воспрепятствовать этому.

Как уже отмечалось, для проковки сварной точки с целью снятия напряжений и повышения плотности ядра, технология контактной точечной сварки в некоторых случаях предусматривает кратковременное увеличение силы сжатия после отключения электрического импульса. Циклограмма в этом случае выглядит следующим образом.

При изготовлении простейших аппаратов контактной сварки для домашнего пользования нет большого резона заниматься точными расчетами параметров. Ориентировочные значения диаметра электродов, сварочного тока, времени сварки и усилия сжатия можно взять из таблиц, имеющихся во многих источниках. Нужно только понимать, что данные в таблицах являются несколько завышенными (или заниженными, если иметь в виду время сварки) по сравнению с теми, которые подойдут для домашних аппаратов, где обычно используются мягкие режимы.

Подготовка деталей к сварке

Поверхность деталей в зоне контакта деталей между собой и в месте контакта с электродами зачищают от окислов и других загрязнений. При плохой зачистке возрастают потери мощности, ухудшается качество соединений и увеличивается износ электродов. В технологии контактной точечной сварки, для зачистки поверхности используют пескоструйную обработку, наждачные круги и металлические щетки, а также травление в специальных растворах.

Высокие требования предъявляются к качеству поверхности деталей из алюминиевых и магниевых сплавов. Целью подготовки поверхности под сварку является удаление без повреждения металла относительно толстой пленки окислов с высоким и неравномерным электрическим сопротивлением.

Оборудование для точечной сварки

Различия между существующими видами аппаратов для точечной сварки определяются в основном родом сварочного тока и формой его импульса, которые производятся их силовыми электрическими контурами. По этим параметрам оборудование контактной точечной сварки подразделяется на следующие виды:
  • машины для сварки переменным током;
  • аппараты низкочастотной точечной сварки;
  • машины конденсаторного типа;
  • машины сварки постоянным током.

Каждый из этих типов машин имеет свои преимущества и недостатки в технологическом, техническом и экономическом аспектах. Наибольшее распространение получили машины для сварки переменным током.

Машины контактной точечной сварки переменного тока . Принципиальная схема машин для точечной сварки переменным током представлена на рисунке ниже.

Напряжение, при котором осуществляется сварка, формируется из напряжения сети (220/380В) с помощью сварочного трансформатора (ТС). Тиристорный модуль (КТ) обеспечивает подключение первичной обмотки трансформатора к питающему напряжению на необходимое время для формирования сварочного импульса. С помощью модуля можно не только управлять продолжительностью времени сварки, но и осуществлять регулирование формы подаваемого импульса за счет изменения угла открытия тиристоров.

Если первичную обмотку выполнить не из одной, а нескольких обмоток, то, подключая их в различном сочетании друг с другом, можно менять коэффициент трансформации, получая различные значения выходного напряжения и сварочного тока на вторичной обмотке.

Кроме силового трансформатора и тиристорного модуля, машины контактной точечной сварки переменного тока имеют набор управляющего оборудования - источник питания для системы управления (понижающий трансформатор), реле, логические контроллеры, панели управления и пр.

Конденсаторная сварка . Сущность конденсаторной сварки заключается в том, что сначала электрическая энергия относительно медленно накапливается в конденсаторе при его зарядке, а затем очень быстро расходуется, генерируя токовый импульс большой величины. Это позволяет производить сварку, потребляя из сети меньшую мощность по сравнению с обычными аппаратами для точечной сварки.

Кроме этого основного преимущества, конденсаторная сварка имеет и другие. При ней происходит постоянное контролируемое расходование энергии (той, которая накопилась в конденсаторе) на одно сварное соединение, что обеспечивает стабильность результата.

Сварка происходит за очень короткое время (сотые и даже тысячные доли секунды). Это дает концентрированное выделение тепла и минимизирует зону термического влияния. Последнее достоинство позволяет использовать её для сварки металлов с высокой электро- и теплопроводностью (медных и алюминиевых сплавов, серебра и др.), а также материалов с резко различающимися теплофизическими свойствами.

Жесткая конденсаторная микросварка используется в радиоэлектронной промышленности.

Количество энергии, накопленное в конденсаторах, можно рассчитать по формуле:

W = C U 2 /2

где С - емкость конденсатора, Ф; W - энергия, Вт; U - зарядное напряжение, В. Изменяя величину сопротивления в зарядной цепи, регулируют время зарядки, зарядный ток и потребляемую из сети мощность.

Дефекты контактной точечной сварки

При качественном исполнении, точечная сварка обладает высокой прочностью и способна обеспечить эксплуатацию изделия в течение длительного срока службы. При разрушениях конструкций, соединенных многоточечной многорядной точечной сваркой, разрушение происходит, как правило, по основному металлу, а не по сварным точкам.

Качество сварки зависит от приобретенного опыта, который сводится в основном к выдерживанию необходимой продолжительности токового импульса на основании визуального наблюдения (по цвету) за сварной точкой.

Правильно выполненная сварная точка расположена по центру стыка, имеет оптимальный размер литого ядра, не содержит пор и включений, не имеет наружных и внутренних выплесков и трещин, не создает больших концентраций напряжения. При приложении усилия на разрыв, разрушение конструкции происходит не по литому ядру, а по основному металлу.

Дефекты точечной сварки подразделяются на три типа:

  • отклонения размеров литой зоны от оптимальных, смещение ядра относительно стыка деталей или положения электродов;
  • нарушение сплошности металла в зоне соединения;
  • изменение свойств (механических, антикоррозионных и др.) металла сварной точки или прилегающих к ней областей.

Наиболее опасным дефектом считается отсутствие литой зоны (непровар в виде "склейки"), при котором изделие может выдерживать нагрузку при невысокой статической нагрузке, но разрушается при действии переменной нагрузки и колебаниях температуры.

Прочность соединения оказывается сниженной и при больших вмятинах от электродов, разрывах и трещинах кромки нахлестки, выплеске металла. В результате выхода литой зоны на поверхность, снижаются антикоррозионные свойства изделий (если они были).

Непровар полный или частичный, недостаточные размеры литого ядра . Возможные причины: мал сварочный ток, слишком велико усилие сжатия, изношена рабочая поверхность электродов. Недостаточность сварочного тока может вызываться не только его малым значением во вторичном контуре машины, но и касанием электрода вертикальных стенок профиля или слишком близким расстоянием между сварными точками, приводящим к большому шунтирующему току.

Дефект обнаруживается внешним осмотром, приподниманием кромки деталей пробойником, ультразвуковыми и радиационными приборами для контроля качества сварки.

Наружные трещины . Причины: слишком большой сварочный ток, недостаточная сила сжатия, отсутствие усилия проковки, загрязненная поверхность деталей и/или электродов, приводящая к увеличению контактного сопротивления деталей и нарушению температурного режима сварки.

Дефект можно обнаружить невооруженным глазом или с помощью лупы. Эффективна капиллярная диагностика.

Разрывы у кромок нахлестки . Причина этого дефекта обычно одна - сварная точка расположена слишком близко от края детали (недостаточна нахлестка).

Обнаруживается внешним осмотром - через лупу или невооруженным глазом.

Глубокие вмятины от электрода . Возможные причины: слишком малый размер (диаметр или радиус) рабочей части электрода, чрезмерно большое ковочное усилие, неправильно установленные электроды, слишком большие размеры литой зоны. Последнее может являться следствием превышения сварочного тока или длительности импульса.

Внутренний выплеск (выход расплавленного металла в зазор между деталями) . Причины: превышены допустимые значения тока или длительности сварочного импульса - образовалась слишком большая зона расплавленного металла. Мало усилие сжатия - не создался надежный уплотняющий пояс вокруг ядра или образовалась воздушная раковина в ядре, вызвавшая вытекание расплавленного металла в зазор. Неправильно (несоосно или с перекосом) установлены электроды.

Определяется методами ультразвукового или рентгенографического контроля или внешним осмотром (из-за выплеска может образоваться зазор между деталями).

Наружный выплеск (выход металла на поверхность детали) . Возможные причины: включение токового импульса при несжатых электродах, слишком большое значение сварочного тока или продолжительности импульса, недостаточное усилие сжатия, перекос электродов относительно деталей, загрязнение поверхности металла. Две последние причины приводят к неравномерной плотности тока и расплавлению поверхности детали.

Определяется внешним осмотром.

Внутренние трещины и раковины . Причины: слишком велики ток или продолжительность импульса. Загрязнена поверхность электродов или деталей. Мала сила сжатия. Отсутствует, опаздывает или недостаточно ковочное усилие.

Усадочные раковины могут возникать во время охлаждения и кристаллизации металла. Чтобы воспрепятствовать их возникновению, необходимо повышать силу сжатия и применять проковывающее сжатие в момент охлаждения ядра. Дефекты обнаруживаются методами рентгенографического или ультразвукового контроля.

Смещение литого ядра или его неправильная форма . Возможные причины: неправильно установлены электроды, не очищена поверхность деталей.

Дефекты обнаруживаются методами рентгенографического или ультразвукового контроля.

Прожог . Причины: наличие зазора в собранных деталях, загрязнение поверхности деталей или электродов, отсутствие или малое усилие сжатия электродов во время токового импульса. Во избежание прожогов ток должен подаваться только после приложения полного усилия сжатия. Определяется внешним осмотром.

Исправление дефектов . Способ исправления дефектов зависит от их характера. Самым простым является повторная точечная или иная сварка. Дефектное место рекомендуется вырезать или высверлить.

При невозможности сварки (из-за нежелательности или недопустимости нагрева детали), вместо дефектной сварной точки можно поставить заклепку, высверлив место сварки. Применяются и другие способы исправления - зачистка поверхности в случае наружных выплесков, термическая обработка для снятия напряжений, правка и проковка при деформации всего изделия.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

ЭЛЕКТРОКОНТАКТНАЯ ТОЧЕЧНАЯ СВАРКА

Цель работы: изучить технологический процесс электроконтактной точечной сварки; определить его отличия; ознакомиться с устройством машины МТ-1606; выполнить сварку образцов с целью определения оптимального режима.

Общая схема образования соединения

Весь процесс образования соединения условно состоит из отдельных физических процессов, которые в зависимости от роли в формировании соединения разделяют на основные и сопутствующие.

При точечной сварке детали 1 собирают внахлест или с отбортовкой, плотно зажимают между электродами 2 сварочной машины, нагревают кратковременным (0,01...0,5 с) импульсом электрического тока большой силы (до десятка кило-ампер) при незначительном напряжении (3...12 В), вследствие чего создается соединение на отдельных участках контакта, которые называются точками. Создание соединения происходит по схеме, что состоит из этапов I-III.

Первый этап начинается с момента сжатия деталей силой Fсв, что вызывает пластическую деформацию микрорельефа в контактах электрод - деталь и деталь - деталь.

Следующее включение тока I и нагрев металла облегчают процессы выравнивания микрорельефа, разрушение поверхностей пленок и формирование электрического контакта.

Тепловое расширение при точечной сварке происходит в условиях сжатия и сопровождается возникновением неравномерного распределения внутренних напряжений, которые вместе с постоянно действующими внешними силами Fсв вызывают необратимые объемные пластические деформации (направление максимальной деформации 3).

Тепловое расширение металла в области контакта деталь - деталь является причиной образования зазора между деталями.

До расплавления металла уменьшение σд и излишек металла за счет дилатометрического эффекта компенсируются незначительным разведением электродов, а также вытеснением частей металла в зазор, что обеспечивает на внутреннем контакте рельеф - уплотнительный поясок 4, который ограничивает растекания сварочного тока.

На первом этапе сопутствующие процессы из-за относительно малой деформации и низкой температуры зоны сварки не получают большого развития.

Второй этап характеризуется расплавлением металла и образованием ядра 5. По мере прохождения тока ядро растет до максимальных размеров - по высоте hя и диаметру dя (размеры ядра или шва регламентируются ГОСТ 15878-79, ГОСТ 14098-85 и определяются из условий обеспечения требуемого уровня прочности свариваемых конструкций). При этом происходит перемешивание металла 6, удаление поверхностных пленок и образование металлических связей в жидкой фазе. Ядро возникает в зоне, где достигается наибольшая плотность тока и в меньшей мере влияет теплообмен с электродами.

При расплавлении в замкнутом объеме резко увеличивается объем металла ядра, возникают электромагнитные силы и, как следствие, возникает гидростатическое давление, которое определяется общим балансом напряжений в зоне сварки. Дилатометрический эффект и общее уменьшение σд компенсируется дальнейшим раздвижением электродов и вытеснением в зазор деформированного металла. Это способствует созданию не только рельефа, который ограничивает растекание тока, но и герметизацию литого ядра, предотвращая разбрызгивание металла и его контакт с атмосферой.

Внутренняя граница металла пояска имеет температуру, близкую к температуре плавления, и низкое значение σд; соответственно, температура внешней границы ниже, а σд больше. Метал пояска находится в объемно-напряженном состоянии, при этом напряжения стремятся увеличить зазор между деталями. Такой характер деформации приконтактной области деталей вызывает "оседание" металла и возникновение вмятин 8 (размер с) на поверхности от электродов.

С появлением расплавленного ядра появляется опасность разбрызгивания, вследствие теплопроводности нагревается шовная зона, изменяется выходная структура металла, наблюдается массоперенос в контакте электрод - деталь (сопутствующие процессы).

Третий этап начинается после выключения сварочного тока -происходит интенсивная кристаллизация ядра (hя, dя), которая оканчивает создание неразъемного соединения деталей в месте соприкосновения. Металл точек имеет дендритную структуру.

Во время кристаллизации продолжается теплопередача в околошовную зону и изменение структуры металла в ней, происходит усадка металла, вследствие чего в нем создаются усадочные полости и раковины; в ядре возникают растягивающие напряжения, которые являются причиной возникновения трещин и под влиянием которых возможно разрушение непрочной точки.

Для снижения уровня остаточных напряжений и предотвращения усадочных трещин и раковин нужны значительные усилия Fков. Высокое качество сварки и максимальная продуктивность процесса для данной толщины, формы и материала изделий определяются правильностью избранного режима сварки.

Качество соединений также зависит от техники сварки, формы электродов, качества сборки и подготовки поверхности, сварочного оборудования, системы контроля и других конструктивно-технологических факторов.

Параметры режима точечной сварки

Основными параметрами режима точечной сварки являются сварочный ток Iсв (амплитудный или действующее значение), продолжительность или время прохождения тока tсв, усилие сжатия деталей электродами Fсв, усилия и продолжительность проковки Fпр, tпр, диаметр рабочей поверхности электрода dэ или радиус сферической поверхности электрода Rэ.

Выходными данными для определения перечисленных пара-метров есть физико-механические свойства металла и толщина свариваемых деталей.

Режимы можно установить расчетно-экспериментальным методом или экспериментально. В зависимости от свойств мате-риалов для точечной сварки рекомендуют так называемые мягкие или жесткие режимы. Мягкие режимы - небольшой ток сварки и большое время сварки; жесткий режим - большой ток сварки, небольшое время сварки.

Есть много рекомендаций по поводу режимов (в виде таблиц, номограмм, графиков). Эти режимы ориентировочны и нуждаются в проверке перед сваркой и часто корректируются с учетом условий подготовки поверхности, сборки, состава оборудования и др.

Корректировку проводят на образцах-свидетелях с использованием зависимости параметров литого ядра от параметров режима. Например, если диаметр недостаточный, увеличивают сварочный ток Iсв.

Во избежание выплесков увеличивают Fпр, dэ, Rэ. Если ядро имеет трещины, увеличивают Fпр приближая его увеличение по времени к моменту выключения тока, а также замедляют кристаллизацию, модулируя задний фронт тока. Усилия прикладывают до прохождения сплава через ТИК; tпр увеличивают при увеличении толщины и уменьшении теплопроводности свариваемых металлов (на жестких режимах и высоких скоростях кристаллизации его уменьшают).

Качество и, в частности, прочность сварочного соединения зависят от размеров литого ядра (hя, dя), а также состояния металла, степени снижения его прочности в шве и зоне термического влияния, вида нагрузок, уровня дефектов.

Параметры режима имеют разное влияние на диаметр ядра и, соответственно, на прочность. С увеличением Iсв или tсв, когда другие параметры постоянны, прочность увеличивается сначала быстро, потом медленнее, с образованием ядра. Но при чрезмерных Iсв и tсв размеры ядра начинают уменьшаться вследствие усиления внутренних выплесков, появления разных дефектов. С увеличением Fсв и dэ прочность также сначала увеличивается в связи с увеличением диаметра ядра, а потом начинает уменьшаться из-за резкого увеличения площади контактов, уменьшения плотности тока.

С уменьшением толщин деталей плотность сварочного тока увеличивается. Для материалов с низким удельным сопротивлением требуется ток больше, чем для материалов с высоким удельным сопротивлением. При высокой теплопроводности и температуропроводности металла сварку проводят на жестких режимах, то есть уменьшают время прохождения сварочного тока и увеличивают его силу.

Если сваривают детали разной толщины, рабочие параметры режима выбирают по самой тонкой из них. Сварка деталей с разной толщиной (при соотношении толщин >1:3) затруднена (рис.а) из-за отсутствия надежного проплавления более тонкой детали (s1

Чтобы избежать этого, рекомендуются жесткие режимы сварки или со стороны тонкой детали использовать электроды с меньшим сечением или эти электроды изготавливают из металла с меньшей теплопроводностью, чем со стороны толстой детали.

При сварке деталей из различных материалов из-за неодинакового выделения тепла диаметр ядра и глубина проплавления увеличиваются в деталях с более высоким удельным сопротивлением и меньшим коэффициентом теплопроводности (деталь 2).

При сварке деталей с применением электродов различных размеров и формы контактирующих поверхностей ядро смещается к электроду с меньшей контактной поверхностью (электрод 2), где больше плотность тока.

Состояние поверхности (контактное сопротивление) деталей существенно влияет на распределение тепла при сварке и, как следствие, на размеры и прочность точек.

Для обеспечения стабильности контактного сопротивления детали перед сваркой обычно зачищают (травлением или механической обработкой) или покрывают тонкой пленкой оксидов с небольшим и постоянным по величине сопротивлением.

Типовой технологический процесс производства сварочных узлов и изготовления точечной сварки состоит с таких операций: изготовления деталей-заготовок, подготовка их поверхностей к сварке, сборка, прихватка, сварка, исправление, механическая обработка и антикоррозионная защита.

Для точечной сварки применяют разные типы машин: переменного тока, низкочастотные, постоянного тока, конденсаторные. Мощность машин - от 5 до 1000 кВт.

Машины переменного тока наиболее распространены во всех областях машиностроения, они проще и дешевле других машин.

Строение машины МТ-1606

Машина переменного тока МТ-1606 предназначена для точечной сварки конструкционных и высоколегированных сталей, титановых сплавов толщиной от 0.8 до 6.5 мм. Возможна также сварка некоторых цветных медных сплавов (латуни, бронзы и др.) толщиной до 1.2 мм. Максимальная мощность машины - 95 кВт, номинальный сварочный ток - 16 кА, максимальное число точек в минуту - 200.

Пневматическая система обеспечивает сжатие и удержание свариваемых деталей 1, в сжатом состоянии во время всего цикла сварки.

Воздух из сети через воздушный фильтр 13, регулятор давления 12, маслораспылитель 11 и электромагнитный пневмоклапан 10 проходит в зависимости от положения золотника клапана через дроссель (10-6,10-4), которые регулируют скорость подачи воздуха в полости цилиндра:
- в нижнюю полость цилиндра 4, совершая подъем нижнего поршня до упора в верхней поршень 7;
- в среднюю полость 6 (через верхний шланг и шток верхнего поршня), совершая опускание нижнего поршня и сжатие деталей.

Рабочее давление воздуха устанавливают при помощи регулятора 12, контролируют - по манометру.

Верхний поршень служит для настройки хода нижнего. Настраивание хода осуществляется при помощи регулировочной гайки 9 на штоке верхнего поршня. Для установки рабочего хода верхнего электрода в пневмоцилиндр (над верхним электродом) нужно подать воздух, открыв кран управления 14. Верхний поршень опустится до упора в верхнюю крышку цилиндра регулировочной гайки.

Кран управления положением верхнего поршня 5 служит для подачи и сброса воздуха из верхней полости цилиндра. При сбросе воздуха верхний поршень поднимается вверх до упора в крышку цилиндра и электроды разойдутся на максимальное расстояние.

С нижним поршнем через шток связан верхний электрододержатель 2, на котором закреплен верхний электрод 2. Нижний электрододержатель и электрод неподвижны.

Маслораспылитель 11 смазывает подвижные части. Масло с маслораспылителя захватывается проходящим воздухом и смазывает клапан, пневмоцлиндр и поршни.

Электрическая схема машины. Источником питания МТ-1606 является трансформатор ТР, который состоит из магнитопровода броневого типа, первичной и вторичной обмоток. Вторичная обмотка имеет один виток из толстой медной шины. Меняя переключателем ступеней ПС число секций первичных катушек, включеных в электрическую сеть, ступенчато регулируют мощность машины.

Автоматический выключатель АВ выключает машину, если в сети машины есть короткое замыкание или она перегреется.

Тиристорный включатель КТ имеет два тиристора, которые включены встречно-параллельно, что дает возможность пропустить на первичную обмотку трансформатора переменный ток. Тиристоры открываются тогда, когда на их управляющие электроды подаются импульсы управления от регулятора цикла сварки.

На машинах такого типа есть возможность плавной регулировки мощности машины за счет синхронного смещения по фазе импульсов управления относительно волн полупериодов переменного тока.

Регулятор цикла РЦ обеспечивает автоматическое управление машиной. Он представляет собой электронно-релейное устройство, которое включает и выключает в определенной последовательности электромагнитный пневмоклапан и тиристорный контактор, благодаря чему в нужный момент совершается сжатие деталей, включение и выключение тока, подъем верхнего электрода.

В машине МТ-1606 электрододержатели, электроды и тиристорный контактор охлаждаются проточной водой. Вода, подаваемая на охлаждение тиристоров, проходит через гидроклапан. Если подача воды прекращается, гидроклапан размыкает управляющую цепь тиристора и сварочный ток не включается.

Порядок работы машины

Общий цикл сварки одной точки tц состоит из сжатия деталей tсж, сварки tсв, проковки tпр и паузы tп.

Сжатие деталей происходит при нажатии на педальную кнопку КП. Сжатый воздух через электромагнитный пневмоклапан подается в среднюю полость цилиндра, опуская вниз нижний поршень, связанный с верхним электрододержателем и электродом.

После стабилизации усилия сжатия (заданный промежуток времени tсж) регулятор цикла подает сигнал на управляющие электроды тиристоров, включается сварочный ток, цепь замыкается через столбик металла, зажатого между электродами. По окончании tсв ток выключается.

После этого для кристаллизации расплавленного металла сварной точки (с целью уменьшения сварочных напряжений и деформаций) детали некоторое время оставляют под давлением (проковка).

По окончании проковки регулятор цикла размыкает цепь питания электромагнитного пневмоклапана, золотник меняет свое положение и воздух подают в нижнюю полость цилиндра. Нижний поршень поднимается вверх, освобождая сваренные детали. Электроды во время паузы, необходимой для замены деталей, будут разведены, а потом цикл сварки повторяется.

Для выполнения сварки одной точки нужно: переключатель рода работы установить в положение "Одиночный цикл", один раз нажать и отпустить педаль.

Для выполнения большого количества точек можно работать в режиме "Автоматическая работа". Педаль управления при этом нужно держать все время в нажатом положении.

Подготовка к работе

  1. Подать воздух в машину, для чего включить компрессор, поднять давление в ресивере до 5 атм и открыть входной вентиль машины.
  2. Настроить машину на требуемый режим сварки:
    1. ход верхнего электрода - выбирается в зависимости от конфигурации свариваемых узлов и деталей, и устанавливается при помощи гайки, накручивающейся на шток верхнего поршня (при настройке хода пользуются краном управления, который после настройки нужно установить в правое положение);
    2. силу сжатия деталей - выбирают в зависимости от толщины и рода свариваемого материала, настраивается винтом воздушного регулятора и контролируется манометром. Она должна быть такой, чтобы обеспечить хороший контакт между деталями и электродами (зависимость усилия сжатия на электродах от давления по манометру приведена в таблице на машине);
    3. ступень мощности (определяет величину тока) - выбирают в зависимости от толщины и рода свариваемого материала. Она устанавливается при помощи трех ножевых переключателей, которые находятся внутри машины - справа (зависимость ступени мощности от положения переключателей указана в таблице машины);
    4. времена сжатия, сварки, проковки, паузы - устанавливаются при помощи переключателей регулятора цикла, расположенного в нижней части машины. Время каждой операции регулируется в пределах 1-198 периодов, то есть в пределах 0.02-3.96 с, через 0.02 с (период переменного тока частотой 50 Гц), на переключателях расположенных слева устанавливаются единицы периодов - десятки.
      Ступень мощности и сила сжатия выбираются в зависимости от толщины и рода свариваемого материала.
  3. Включить рубильник сети и автоматический выключатель.
  4. Опробовать работу машины без сварочного тока, для чего выключить тумблер "Сварочный ток", нажать на педаль управления и после верно отработанного цикла сварки включить тумблер.

Методика работы

  1. Ознакомится с сущностью контактной точечной сварки.
  2. Установить особенности формирования ядра сварочной точки.
  3. Установить влияние параметров режима на параметры сварного соединения.
  4. Ознакомиться со строением машины МТ-1606.
  5. Провести тренировочную сварку соответственно "Порядку работы машины".
  6. Установить режим сварки (по указанию преподавателю), выполнить сварку образцов, проверить на прочность сварочные соединения.
  7. Составить отчет, сделать анализ полученных результатов.

Таблица 1 - Протокол режима сварки и испытания образцов

Оборудование и материалы

  1. Пост для контактной сварки.
  2. Машина для контактной точечной сварки МТ-1606.
  3. Разрывная машина.
  4. Сварочные материалы: листовые образцы из углеродистой и низколегированной стали толщиной 0,5...1,2 мм.
  1. Схема контактной точечной сварки.
  2. Особенности формирования ядра точки, параметры режима и их влияние на параметры сварочного соединения.
  3. Принципиальная схема машины МТ-1606. Технические данные, спецификация основных узлов.
  4. Результаты исследований (табл.1).
  5. График зависимости F = f(tсв).
  6. Анализ полученных результатов. Выводы (обоснование оптимального режима сварки).

Контрольные вопросы

  1. Где выделяется тепло при точечной сварке?
  2. Опишите цикл сварки одной точки, ее характерные размеры?
  3. Назовите основные параметры режима точечной сварки?
  4. Как влияют параметры режима на качество соединения?
  5. Как избежать выплеска металла, не снижая прочности точки?
  6. Как изменить параметры режима сварки, если толщина свариваемых деталей: -увеличилась, -уменьшилась?
  7. Для чего нужна проковка?
  8. Расскажите назначение узлов электрической схемы, пневмосхемы?
  9. Как настроить точечную машину на максимальный сварочный ток (сделать это практически)?

Настройка контактных машин заключается в подготовке машины к работе, выборе режима сварки и настройке машины на этот режим, поддержании режима путем сохранения постоянных величин параметров сварки.
Основными параметрами при точечной и рельефной сварке являются сварочный ток, время протекания тока, усилие на электродах. При автоматической работе машины учитывается время опускания верхнего электрода и сжатия электродами свариваемого изделия, время проковки металла сварной точки после выключения тока и время паузы, необходимое для подъема верхнего электрода, освобождения свариваемого изделия и его съема или передвижения.
При шовной сварке учитывается время сварки и паузы между импульсами тока и скорость движения изделия.
При сварке на стыковых машинах в число основных параметров входят также установочная длина, общая величина осадки, величина осадки под током и без него, скорость оплавления и осадки.
При точечной и шовной сварке сварочный ток подбирают в зависимости от толщины свариваемых деталей. Изменение сварочного тока производится переключателями ступеней сварочного трансформатора. При работе на машинах, снабженных прерывателями тока, более тонкое регулирование тока осуществляется путем изменения угла поджигания игнитронов.
В зависимости от материала и конфигурации свариваемых деталей сварку можно вести на жестких и мягких режимах. Жесткие режимы сварки характеризуются большими токами и усилиями на электродах, малой длительностью сварки. Применение жестких режимов позволяет по сравнению с мягкими режимами увеличивать темп работы машины и получать более качественные сварные соединения.
Время сварки в современных машинах регулируется в широком диапазоне с помощью электронных регуляторов времени и других выключающих устройств.
В стыковых машинах большое значение имеет усилие осадки. Если для выбранного сечения деталей усилие осадки недостаточно, добиться стабильности результатов сварки нельзя.
При настройке стыковой машины следует обращать внимание, чтобы ток не выключался раньше начала осадки. Для этого необходимо предусматривать величину осадки деталей под током.
Установочную длину можно регулировать положением подвижной плиты относительно неподвижной. Изменение установочной длины приводит к нарушению режима сварки.
При стыковой сварке ток подбирается по сечению свариваемых деталей.

Популярные статьи

   Стеклоблоки - элитный материал
Поделитесь с друзьями или сохраните для себя:

Загрузка...