Производство и использование электрической энергии. Производство, передача и использование электрической энергии (презентация)


Генерирование электрической энергии Электрический ток вырабатывается в генераторах-устройствах, преобразующих энергию того или иного вида в электрическую энергию. Преобладающую роль в наше время играют электромеханические индукционные генераторы переменного тока. Там механическая энергия превращается в электрическую. Электрический ток вырабатывается в генераторах-устройствах, преобразующих энергию того или иного вида в электрическую энергию. Преобладающую роль в наше время играют электромеханические индукционные генераторы переменного тока. Там механическая энергия превращается в электрическую. Генератор состоит из Генератор состоит из постоянного магнита, создающего магнитное поле, и обмотки, в которой индуцируется переменная ЭДС. постоянного магнита, создающего магнитное поле, и обмотки, в которой индуцируется переменная ЭДС.


Трансформаторы ТРАНСФОРМАТОР– аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения при неизменной частоте. В простейшем случае трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки с проволочными обмотками. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», т. е. приборы, потребляющие электроэнергию, называется вторичной. Действие трансформатора основано на явлении электромагнитной индукции.


Производство электрической энергии Производится электроэнергия на больших и малых электрических станциях в основном с помощью электромеханических индукционных генераторов. Существует несколько типов электростанций: тепловые, гидроэлектрические и атомные электростанции. АЭС ГЭСТепловые электростанции


Использование электроэнергии Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем является также транспорт. Все большее количество железнодорожных линий переводиться на электрическую тягу. Почти все деревни и села получают электроэнергию от государственных электростанций для производственных и бытовых нужд. Около трети электроэнергии, потребляемой промышленностью, используются для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.).


Передача электроэнергии Передача энергии связана с заметными потерями: электрический ток нагревает провода линий электропередачи. При очень большой длине линии передача энергии может стать экономически невыгодной. Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Поэтому на крупных электростанциях ставят повышающие трансформаторы. Они увеличивают напряжение в линии во столько же раз, во сколько уменьшают силу тока. Для непосредственного использования электроэнергии на концах линии ставят понижающие трансформаторы. Повышающий трансформатор Понижающий трансформатор Понижающий трансформатор Понижающий трансформатор К потребителю Генератор 11 кВ 110 кВ 35 кВ 6 кВ Линия передачи Линия передачи Линия передачи 35 кВ 6 кВ 220 В


Эффективное использование электроэнергии Потребность в электроэнергии постоянно увеличивается. Удовлетворить эту потребность можно двумя способами. Самый естественный и единственный на первый взгляд способ – строительство новых мощных электростанций. Но ТЭС потребляют не возобновляемые природные ресурсы, а также наносят большой ущерб экологическому равновесию на нашей планете. Передовые технологии позволяют удовлетворить потребности в электроэнергии другим способом. Приоритет должен быть отдан увеличению эффективности использования электроэнергии, а не росту мощности электростанций.

Передача электроэнергии - процесс, который заключается в поставке электроэнергии потребителям. Электричество производится на удаленных источниках производства (электростанциях) огромными генераторами, использующими уголь, природный газ, воду, атомный распад или ветер.

Ток передается через трансформаторы, которые повышают его напряжение. Именно высокое напряжение экономически выгодно при передаче энергии на большие расстояния. Высоковольтные линии электропередач простираются по всей стране. По ним электрический ток достигает подстанций у больших городов, где понижают его напряжение и отправляют его на небольшие (распределительные) линии электропередач. Электрический ток путешествует по распределительным линиям в каждом районе города и попадает в трансформаторные будки. Трансформаторы уменьшают напряжение до определенного стандартного значения, которое безопасно и необходимо для работы бытовых устройств. Ток попадает в дом по проводам и проходит через счетчик, показывающий количество расходуемой энергии.

Трансформатор - статическое устройство, которое преобразует переменный электрический ток одного напряжения в переменный ток другого напряжения, не изменяя его частоту. Он может работать только на переменном токе.

Основные конструкционные части трансформатора

Устройство состоит из трех основных частей:

  1. Первичная обмотка трансформатора. Число витков N 1 .
  2. Сердечник замкнутой формы из магнитомягкого материала (например, сталь).
  3. Вторичная обмотка. Число витков N 2 .

На схемах трансформатор изображают таким образом:

Принцип работы

Работа силового трансформатора основывается на законе электромагнитной индукции Фарадея.

Между двумя раздельными обмотками (первичной и вторичной), которые связаны общим магнитным потоком, проявляется взаимная индукция. Взаимная индукция - процесс, с помощью которого первичная обмотка индуцирует напряжение во вторичной обмотке, расположенной в непосредственной близости от нее.

На первичную обмотку поступает переменный ток, который производит магнитный поток, при подключении к источнику питания. Магнитный поток проходит через сердечник и так как он меняется в течение времени, то возбуждает во вторичной обмотке ЭДС индукции. Напряжение тока на второй обмотке может быть ниже, чем на первой, тогда трансформатор называется понижающим. У повышающего трансформатора на вторичной обмотке напряжение тока выше. Частота тока остается неизменной. Эффективное понижение или повышение напряжения не может увеличить электрическую мощность, поэтому на выходе трансформатора сила тока соответственно пропорционально повышается или понижается.

Для амплитудных значений напряжения на обмотках можно записать следующее выражение:

k - коэффициент трансформации.

Для повышающего трансформатора k>1, а для понижающего - k<1.

Во время работы реального устройства всегда существуют потери энергии:

  • происходит нагревание обмоток;
  • затрачивается работа на намагничивание сердечника;
  • в сердечнике возникают токи Фуко (они оказывают тепловое действие на массивный сердечник).

Для уменьшения потерь при нагревании, трансформаторные сердечники делают не из цельного куска металла, а из тонких пластин, между которыми располагается диэлектрик.

БОУ Чувашской Республики СПО «АСХТ» Минобразования Чувашии

МЕТОДИЧЕСКАЯ

РАЗРАБОТКА

открытого занятия по дисциплине «Физика»

Тема: Производство, передача и потребление электрической энергии

высшей квалификационной категории

Алатырь, 2012год

РАССМОТРЕНО

на заседании методической комиссии

гуманитарных и естественнонаучных

дисциплин

Протокол № __ от «___» ______ 2012г.

Председатель_____________________

Рецензент: Ермакова Н.Е., преподаватель БОУ ЧР СПО «АСХТ», председатель ПЦК гуманитарных и естественнонаучных дисциплин

На сегодняшний день энергия остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать. Трудно представить существование современной цивилизации без электроэнергии. Если в нашей квартире отключается свет хотя бы на несколько минут, то мы уже испытываем многочисленные неудобства. А что произойдет при отключении электроэнергии на несколько часов! Электрический ток – основной источник электроэнергии. Вот почему так важно представлять физические основы получения, передачи и использования переменного электрического тока.

  1. Пояснительная записка

  2. Содержание основной части

  3. Библиографический список

  4. Приложения.

Пояснительная записка

Цели:
- познакомить студентов с физическими основами производства, передачи и

использования электрической энергии

Способствовать формированию у студентов информационной и коммуникативной

компетентностей

Углубить познания о развитии электроэнергетики и связанных с этим экологических

проблем, воспитание чувства ответственности за сохранение окружающей среды

Обоснование выбранной темы:

Представить сегодня нашу жизнь без электрической энергии невозможно. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Немыслим без электроэнергии и наш быт. Электроэнергия была и остается главной составляющей жизни человека. Какой будет энергетика ХХІ века? Чтобы дать ответы на этот вопрос необходимо знать основные способы получения электроэнергии, изучить проблемы и перспективы современного производства электроэнергии не только в России, но и на территории Чувашии и Алатыря Данное занятие позволяет сформировать у студентов умение перерабатывать информацию и применять знания теории на практике, развивать навыки самостоятельной работы с различными источниками информации. На этом занятии раскрываются возможности формирования информационной и коммуникативной компетентностей

План занятия

по дисциплине «Физика»
Дата: 16.04.2012 г.
Группа: 11 тв
Цели:

- образовательная: - познакомить студентов с физическими основами производства,

передачи и использования электрической энергии

Способствовать формированию у студентов информационной и

коммуникативной компетентностей

Углубить познания о развитии электроэнергетики и связанных с

этим экологических проблем, воспитание чувства ответственности

за сохранение окружающей среды

- развивающая:: - формировать умений перерабатывать информацию и применять

знания теории на практике;

Развивать навыки самостоятельной работы с различными

источниками информации

Развивать познавательный интерес к предмету.
- воспитательная: - воспитывать познавательную активность студентов;

Воспитывать умение слушать и быть услышанным;

Воспитывать самостоятельность студентов в приобретении новых

знаний


- воспитывать коммуникативные качества при работе в группах
Задача: формирование ключевых компетенций при изучении производства, передачи и использования электрической энергии
Вид занятия - урок
Тип занятия - комбинированный урок
Средства обучения: учебники, справочники, раздаточный материал, мультимедийный проектор,

экран, электронная презентация


Ход занятия:

  1. Организационный момент (проверка отсутствующих, готовности группы к уроку)

  2. Организация целевого пространства

  3. Проверка знаний студентов, сообщение темы и плана опроса, постановка цели
Тема: «Трансформаторы»

Действия педагога

Действия студентов


Методы проведения



  1. Проводит фронтальную беседу, корректирует ответы студентов:
1) В чём преимущества электрической энергии перед другими видами энергии?

2) С помощью какого устройства изменяют силу переменного тока и напряжение?

3) Каково его назначение?

4) Каково устройство трансформатора?

6) Что такое коэффициент трансформации? Каким он бывает численно?

7) Какой трансформатор называют повышающим, какой понижающим?

8) Что называют мощностью трансформатора?


  1. Предлагает решить задачу

  1. Проводит тестирование

  2. Предлагает студентам ключи к тесту для проведения самопроверки

  1. Отвечают на вопросы

    1. Находят правильные ответы

    2. Корректируют ответы товарищей

    3. Вырабатывают критерии своего поведения

    4. Сравнивают и находят общее и отличное в явлениях

  1. Анализируют решение, ищут ошибки, обосновывают ответ

  1. Отвечают на вопросы теста

  2. Проводят взаимопроверку тестов

Фронтальная беседа

Решение задач

Тестирование


  1. Подведение итогов проверки основных положений изученного раздела

  2. Сообщение темы, постановка цели, плана изучения нового материала

Тема: «Производство, передача и потребление электроэнергии»
План: 1) Производство электроэнергии:

а) Промышленная энергетика (ГЭС, ТЭС, АЭС)

б) Альтернативная энергетика (ГеоТЭС, СЭС, ВЭС, ПЭС)

2) Передача электрической энергии

3) Эффективное использование электрической энергии

4) Энергетика Чувашской Республики


  1. Мотивация учебной деятельности студентов

Действия педагога

Действия студентов


Метод изучения



  1. Организует целевое пространство, знакомит с планом изучения темы

  2. Знакомит с основными способами производства электроэнергии

  3. Предлагает студентам выделить физические основы производства электроэнергии

  4. Предлагает заполнить обобщающую таблицу

  5. Формирует умения перерабатывать информацию, выделять главное, анализировать, сравнивать, находить общее и отличное, делать выводы;

  1. Осознают цели, записывают план

  1. Слушают, осознают, анализируют

  1. Делают доклад, слушают докладчика, осмысливают услышанное, делают выводы

  1. Исследуют средства, обобщают, делают выводы, заполняют таблицу

  2. Сравнивают, находят общее и отличное

Опережающая самостоятельная работа


Исследование
Доклады студентов

  1. Закрепление нового материала

  1. Обобщение и систематизация материала.

  2. Проведение итогов занятия.

  3. Задание для самостоятельной работы студентов во внеаудиторное время.

  • Учебник § 39-41, закончить заполнение таблицы
Тема: Производство, передача и потребление электроэнергии
Представить сегодня нашу жизнь без электрической энергии невозможно. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Немыслим без электроэнергии и наш быт. Столь широкое применение электроэнергии объясняется ее преимуществами перед другими видами энергии. Электроэнергия была и остается главной составляющей жизни человека Главные вопросы – сколько энергии нужно человечеству? Какой будет энергетика ХХІ века? Чтобы дать ответы на эти вопросы необходимо знать основные способы получения электроэнергии, изучить проблемы и перспективы современного производства электроэнергии не только в России, но и на территории Чувашии и Алатыря.

Преобразования энергии различных видов в электрическую энергию происходит на электростанциях. Рассмотрим физические основы производства электроэнергии на электростанциях.

Статистические данные о производстве электроэнергии в России, млрд кВтч

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы:


  • Электростанции промышленной энергетики: ГЭС, ТЭС, АЭС

  • Электростанции альтернативной энергетики: ПЭС, СЭС, ВЭС, ГеоТЭС

Гидроэлектростанции
Гидроэлектростанция представляет собой комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию На ГЭС электроэнергию получают, используя энергию воды, перетекающей с высшего уровня к низшему уровню и вращающей при этом турбину. Плотина – самый важный и самый дорогостоящий элемент ГЭС. Вода перетекает с верхнего бьефа в нижний бьеф по специальным трубопроводам, либо по выполненным в теле плотины каналам и приобретает большую скорость. Струя воды поступает на лопасти гидротурбины. Ротор гидротурбины приводится во вращение под действием центробежной силы струи воды. Вал турбины соединяется с валом электрического генератора, и при вращении ротора генератора механическая энергия ротора преобразуется в электрическую энергию.
Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами – их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Однако гидроэнергетика не безвредна для окружающей среды. При постройке плотины образуется водохранилище. Вода, залившая огромные площади, необратимо изменяет окружающую среду. Подъем уровня реки плотиной может вызвать заболоченность, засоленность, изменения прибрежной растительности и микроклимата. Поэтому так важно создание и использование экологически безвредных гидротехнических сооружений.
Теплоэлектростанции
Тепловая электростанция (ТЭС) – электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основными видами топлива для ТЭС являются природные ресурсы – газ, уголь, торф, горючие сланцы, мазут. Тепловые электростанции разделяются на две группы: конденсационные и теплофикационные или теплоцентрали (ТЭЦ). Конденсационные станции снабжают потребителей только электрической энергией. Их сооружают вблизи залежей местного топлива с тем, чтобы не возить его на большие расстояния. Теплоцентрали снабжают потребителей не только электрической энергией, но и теплом – водяным паром или горячей водой, поэтому ТЭЦ сооружают поблизости от приемников теплоты, в центрах промышленных районов и крупных городов для уменьшения протяженности теплофикационных сетей. Топливо транспортируют на ТЭЦ из мест его добычи. В машинном зале ТЭС установлен котел с водой. За счет тепла, образующегося в результате сжигания топлива, вода в паровом котле нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 550°С и под давлением 25 МПа поступает по паропроводу в паровую турбину, назначение которой превращать тепловую энергию пара в механическую энергию. Энергия движения паровой турбины преобразуется в электрическую энергию генератором, вал которого непосредственно соединен с валом турбины. После паровой турбины водяной пар, имея уже низкое давление и температуру около 25°С, поступает в конденсатор. Здесь пар с помощью охлаждающей воды превращается в воду, которая с помощью насоса снова подается в котел. Цикл начинается снова. ТЭС работают на органическом топливе, но это, к сожалению, невосполнимые природные ресурсы. К тому же, работа ТЭС сопровождается экологическими проблемами: при сгорании топлива происходит тепловое и химическое загрязнение среды, что оказывает губительное воздействие на живой мир водоемов и качество питьевой воды.
Атомные электростанции
Атомная электростанция (АЭС) – электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую энергию. Атомные электростанции действуют по такому же принципу, что и тепловые электростанции, но используют для парообразования энергию, получающуюся при делении тяжелых атомных ядер (урана, плутония). В активной зоне реактора протекают ядерные реакции, сопровождающиеся выделением огромной энергии. Вода, соприкасающаяся в активной зоне реактора с тепловыделяющими элементами, забирает у них тепло и передает это тепло в теплообменнике также воде, но уже не представляющей опасности радиоактивного излучения. Поскольку вода в теплообменнике превращается в пар, его называют парогенератором. Горячий пар поступает в турбину, преобразующую тепловую энергию пара в механическую энергию. Энергия движения паровой турбины преобразуется в электрическую энергию генератором, вал которого непосредственно соединен с валом турбины. АЭС, являющиеся наиболее современным видом электростанций, имеют ряд существенных преимуществ перед другими видами электростанций: не требуют привязки к источнику сырья и собственно могут быть размещены в любом месте, при нормальном режиме функционирования считаются экологически безопасными. Но при авариях на АЭС возникает потенциальная опасность радиационного загрязнения среды. Кроме того существенной проблемой остается утилизация радиоактивных отходов и демонтаж отслуживших свой срок АЭС.
Альтернативная энергетика - совокупность перспективных способов получения энергии, которые распространены, не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии района. Альтернативный источник энергии - способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии - потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений.
Приливные электростанции
Использование энергии приливов началось еще в ХІ веке, когда на берегах Белого и Северного морей появились мельницы и лесопилки. Два раза в сутки уровень океана то поднимается под действием гравитационных сил Луны и Солнца, притягивающих к себе массы воды. Вдали от берега колебания уровня воды не превышают 1 м, но у самого берега они могут достигать 13-18 метров. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор. Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 метров. В приливных электростанциях двустороннего действия турбины работают при движении воды из моря в бассейн и обратно. Приливные электростанции двустороннего действия способны вырабатывать электроэнергию непрерывно в течение 4-5 часов с перерывами в 1-2 часа четыре раза в сутки. Для увеличения времени работы турбин существуют более сложные схемы – с двумя, тремя и большим количеством бассейнов, однако стоимость таких проектов весьма высока. Недостаток приливных электростанций в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым – условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.
Ветряные электростанции
Энергия ветра – это косвенная форма солнечной энергии, являющаяся следствием разности температур и давлений в атмосфере Земли. Около 2% поступающей на Землю солнечной энергии превращается в энергию ветра. Ветер – возобновляемый источник энергии. Его энергию можно использовать почти во всех районах Земли. Получение электроэнергии от ветросиловых установок является чрезвычайно привлекательной, но вместе с тем технически сложной задачей. Трудность заключается в очень большой рассеянности энергии ветра и в его непостоянстве. Принцип действия ветряных электростанций прост: ветер крутит лопасти установки, приводя в движение вал электрогенератора. Генератор вырабатывает электрическую энергию, и, таким образом, энергия ветра превращается в электрический ток. Производство ВЭС очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные установки даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ВЭС вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ВЭС, необходимы огромные площади много больше, чем для других типов электрогенераторов. И все же изолированные ВЭС с тепловыми двигателями как резерв и ВЭС, которые работают параллельно с тепло – и гидростанциями, должны занять видное место в энергоснабжении тех районов, где скорость ветра превышает 5 м/с.
Геотермальные электростанции
Геотермальная энергия – это энергия внутренних областей Земли. Извержение вулканов наглядно свидетельствует об огромном жаре внутри планеты. Ученые оценивают температуру ядра Земли в тысячи градусов Цельсия. Геотермальное тепло – это тепло, содержащееся в подземной горячей воде и водяном паре, и тепло нагретых сухих пород. Геотермальные тепловые электростанции (ГеоТЭС) преобразуют внутреннее тепло Земли (энергию горячих пароводяных источников) в электрическую энергию. Источниками геотермальной энергии могут быть подземные бассейны естественных теплоносителей – горячей воды или пара. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Полученный таким способом природный пар после предварительной очистки от газов, вызывающих разрушение труб, направляется в турбины, соединенные с электрогенераторами. Использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии. К недостаткам ГеоТЭС относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы создают в окрестностях немалый шум и могут, к тому же, содержать отравляющие вещества. Кроме того, ГеоТЭС построить можно не везде, потому что для ее постройки необходимы геологические условия.
Солнечные электростанции
Солнечная энергия – наиболее грандиозный, дешевый, но, и, пожалуй, наименее используемый человеком источник энергии. Преобразование энергии солнечного излучения в электрическую энергию осуществляется с помощью солнечных электростанций. Различают термодинамические СЭС, в которых солнечная энергия сначала преобразуется в тепловую, а затем в электрическую; и фотоэлектрические станции, непосредственно преобразующие солнечную энергию в электрическую энергию. Фотоэлектрические станции бесперебойно снабжают электроэнергией речные бакены, сигнальные огни, системы аварийной связи, лампы маяков и многие другие объекты, расположенные в труднодоступных местах. По мере совершенствования солнечных батарей они будут находить применение в жилых домах для автономного энергоснабжения (отопления, горячего водоснабжения, освещения и питания бытовых электроприборов). Солнечные электростанции обладают заметным преимуществом перед станциями других типов: отсутствием вредных выбросов и экологической чистотой, бесшумностью в работе, сохранением в неприкосновенности земных недр.
Передача электроэнергии на расстояние
Электроэнергия производится вблизи источников топлива или гидроресурсов, в то время как ее потребители находятся повсеместно. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния. Рассмотрим принципиальную схему передачи электроэнергии от генератора к потребителю. Обычно генераторы переменного тока на электростанциях вырабатывают напряжение, не превышающее 20 кВ, так как при более высоких напряжениях резко возрастает возможность электрического пробоя изоляции в обмотке и в других частях генератора. Для сохранения передаваемой мощности напряжение в ЛЭП должно быть максимальным, поэтому на крупных электростанциях ставят повышающие трансформаторы. Однако напряжение в линии электропередачи ограничено: при слишком высоком напряжении между проводами возникают разряды, приводящие к потерям энергии. Для использования электроэнергии на промышленных предприятиях требуется значительное снижение напряжения, осуществляемое с помощью понижающих трансформаторов. Дальнейшее снижение напряжения до величины порядка 4 кВ необходимо для электрораспределения по местным сетям, т.е. по тем проводам, которые мы видим на окраинах наших городов. Менее мощные трансформаторы снижают напряжение до 220 В (напряжение, используемое большинством индивидуальных потребителей).

Эффективное использование электроэнергии
Электроэнергия занимает существенное место в статье расходов каждой семьи. Ее эффективное использование позволит значительно снизить издержки. Все чаще в наших квартирах «прописываются» компьютеры, посудомоечные машины, кухонные комбайны. Поэтому и плата за электроэнергию весьма значительна. Возросшее энергопотребление приводит к дополнительному потреблению невозобновляемых природных ресурсов: уголь, нефть, газ. При сжигании топлива в атмосферу выбрасывается углекислый газ, что приводит к пагубным климатическим изменениям. Экономия электричества позволяет сократить потребление природных ресурсов, а значит, и снизить выбросы вредных веществ в атмосферу.

Четыре ступени энергосбережения


  • Не забывайте выключать свет.

  • Использовать энергосберегающие лампочки и бытовую технику класса А.

  • Хорошо утеплять окна и двери.

  • Установить регуляторы подачи тепла (батареи с вентилем).

Энергетика Чувашии - одна из самых развитых отраслей промышленности республики, от работы которой напрямую зависит социальное, экономическое и политическое благополучие. Энергетика - это основа функционирования экономики и жизнеобеспечения республики. Работа энергетического комплекса Чувашии настолько прочно связана с повседневной жизнью каждого предприятия, учреждения, фирмы, дома, каждой квартиры и в итоге – каждого жителя нашей республики.


В самом начале XX века, когда электроэнергетика делала еще только первые практические шаги.

До 1917г. на территории современной Чувашии не было ни одной электрической станции общественного пользования. Крестьянские дома освещались лучиной.

В промышленности имелось всего 16 первичных двигателей. В Алатырском уезде электроэнергию производили и использовали на лесопильном заводе, на мукомольных предприятиях. Небольшая электростанция имелась на винокуренном заводе вблизи Марпосада. Собственную электростанцию на маслобойном заводе в г.Ядрине имели купцы Таланцевы. В Чебоксарах небольшую электростанцию имел купец Ефремов. Она обслуживала лесопильное производство и два его дома.

Как в домах, так и на улицах городов Чувашии света почти не было.

Развитие энергетики Чувашии начинается после 1917г. С 1918г. начинается строительство электростанций общественного пользования, разворачивается большая работа по созданию электроэнергетики в г.Алатырь. Первую электростанцию решили построить в то время на бывшем заводе Попова.

В Чебоксарах вопросами электрификации занимался отдел коммунального хозяйства. Его усилиями в 1918г. возобновила работу электростанция на лесопильном заводе, принадлежавшем купцу Ефремову. Электроэнергия по двум линиям поступала в государственные учреждения и на уличное освещение.

Образование Чувашской автономной области (24 июня 1920г.) создало благоприятные условия для развития энергетики. Именно в 1920г. в связи с острой нуждой областной отдел коммунального хозяйства оборудовал первую небольшую электростанцию г.Чебоксары, мощность в 12 кВт.

Мариинско-Посадская электростанция была оборудована в 1919г. Начала давать электроэнергию Марпосадская городская электростанция. Цивильская электростанция была построена в 1919г., но из-за отсутствия линий электропередач отпуск электроэнергии стал производиться только с 1923 года.

Таким образом, первые основы энергетики Чувашии закладывались в годы интервенции и гражданской войны. Создавались первые небольшие городские коммунальные электростанции общественного пользования общей мощностью около 20 кВт.

До революции 1917 года на территории Чувашии не было ни одной электрической станции общественного пользования, в домах царила лучина. При лучине или керосиновой лампе работали даже в небольших мастерских. Здесь же кустари использовали оборудование с механическим приводом. На более солидных предприятиях, где обрабатывали сельскохозяйственные и лесные продукты, варили бумагу, сбивали масло и мололи муку,

имелось 16 маломощных двигателей.

При большевиках пионером энергетики Чувашии стал г. Алатырь. В этом небольшом городке благодаря усилиям местного совнархоза появилась первая общественная электростанция.


В Чебоксарах вся электрификация в 1918 году свелась к тому, что восстановили электростанцию на конфискованном у купца Ефремова лесопильном заводе, который стал называться «Имени 25 октября». Однако ее электроэнергии хватило лишь на освещение некоторых улиц и госучреждений (по статистике в 1920 году городским чиновникам светило около 100 лампочек мощностью 20 свечей).

В 1924 году были построены еще три небольших электростанции, и, для управления увеличивающейся энергетической базой, 1 октября 1924 года было создано Чувашское объединение коммунальных электростанций – ЧОКЭС. В 1925 году Госплан республики принял план электрификации, по которому предусматривалось за 5 лет построить 8 новых электростанций – 5 городских (в Чебоксарах, Канаше, Марпосаде, Цивильске и Ядрине) и 3 сельских (в Ибресях, Вурнарах и Урмарах). Реализация этого проекта позволила электрифицировать 100 сел – в основном Чебоксарского и Цивильского районов и вдоль тракта Чебоксары – Канаш, 700 крестьянских дворов, некоторые кустарные мастерские.
За 1929-1932 годы мощности коммунальных и промышленных электростанций республики выросли почти в 10 раз; выработка электроэнергии этими электростанциями увеличилась почти в 30 раз.

В годы Великой Отечественной войны были проведены большие мероприятия по укреплению и развитию энергетической базы промышленности республики. Рост мощностей происходил главным образом за счёт роста мощностей районных, коммунальных и сельских электростанций. Энергетики Чувашии с честью выдержали тяжёлое испытание и выполнили свой патриотический долг. Они понимали, что производимая электроэнергия необходима, в первую очередь, предприятиям, выполняющим заказы с фронта.


За годы послевоенной пятилетки в Чувашской АССР построено и сдано в эксплуатацию 102 сельских электростанции, вт.ч. 69 ГЭС и 33 ТЭС. Отпуск электроэнергии сельскому хозяйству увеличился в 3 раза по сравнению с 1945 годом.
В 1953 году в Алатыре по приказу, подписанному Сталиным, было начато строительство Алатырской ТЭС. Первый турбогенератор мощностью 4 МВТ был введен в эксплуатацию в 1957 году, 2-й - в 1959 году. По прогнозам, мощности ТЭС должно было хватить до1985 г. как для города, так и района и обеспечить электроэнергией Тургеньевский Светозавод в Мордовии.

Библиографический список


  1. Учебник С.В.Громова «Физика, 10 класс». Москва: Просвещение.

  2. Энциклопедический словарь юного физика. Состав. В.А. Чуянов, Москва: Педагогика.

  3. Эллион Л., Уилконс У.. Физика. Москва: Наука.

  4. Колтун М. Мир физики. Москва.

  5. Источники энергии. Факты, проблемы, решения. Москва: Наука и техника.

  6. Нетрадиционные источники энергии. Москва: Знание.

  7. Юдасин Л.С.. Энергетика: проблемы и надежды. Москва: Просвещение.

  8. Подгорный А.Н. Водородная энергетика. Москва: Наука.

Приложение

Электростанция

Первичный источник энергии


Схема преобразования

энергии

Преимущества


Недостатки






ГеоТЭС



.
Лист самоконтроля

Закончите предложение:

Энергосистема - это


  1. Электрическая система электростанции

  2. Электрическая система отдельного города

  3. Электрическая система районов страны, соединенная высоковольтными линиями электропередачи

Энергосистема - Электрическая система районов страны, соединенная высоковольтными линиями электропередачи

Что является источником энергии на ГЭС?


  1. Нефть, уголь, газ

  2. Энергия ветра

  3. Энергия воды

Какие источники энергии – возобновляемые или невозобновляемые – используются в Республике Чувашия?

Невозобновляемые



Расположите в хронологическом порядке источники энергии, которые становились доступны человечеству, начиная с самых ранних:

А. Электрическая тяга;

Б. Атомная энергия;

В. Мускульная энергия домашних животных;

Г. Энергия пара.



Назовите известные вам источники энергии, использование которых приведет к уменьшению экологических последствий электроэнергетики.


ПЭС
ГеоТЭС

Проверьте себя по ответам на экране и выставьте оценку:

5 верных ответов – 5

4 верных ответа – 4

3 верных ответа - 3


К атегория: Электромонтажные работы

Производство электрической энергии

Электрическая энергия (электроэнергия) является наиболее совершенным видом энергии и используется во всех сферах и отраслях материального производства. К ее преимуществам относят - возможность передачи на большие расстояния и преобразование в другие виды энергии (механическую, тепловую, химическую, световую и др).

Электрическая энергия вырабатывается на специальных предприятиях - электрических станциях, преобразующих в электрическую другие виды энергии: химическую, топлива, энергию воды, ветра, солнца, атомную.

Возможность передачи электроэнергии на большие расстояния позволяет строить электростанции вблизи мест нахождения топлива или на многоводных реках, что является более экономичным, чем подвоз в больших количествах топлива к электростанциям, расположенным вблизи потребителей электроэнергии.

В зависимости от вида используемой энергии различают электростанции тепловые, гидравлические, атомные. Электростанции, использующие энергию ветра и теплоту солнечных лучей, представляют собой пока маломощные источники электроэнергии, не имеющие промышленного значения.

На тепловых электростанциях используется тепловая энергия, получаемая при сжигании в топках котлов твердого топлива (уголь, торф, горючие сланцы), жидкого (мазут) и газообразного (природный газ, а на металлургических заводах - доменный и коксовый газ).

Тепловая энергия превращается в механическую энергию вращением турбины, которая в генераторе, соединенном с турбиной, преобразуется в электрическую. Генератор становится источником электроэнергии. Тепловые электростанции различают по виду первичного двигателя: паровая турбина, паровая машина, двигатель внутреннего сгорания, локомобиль, газовая турбина. Кроме того, паротурбинные электростанции подразделяют на конденсационные и теплофикационные. Конденсационные станции снабжают потребителей только электрической энергией. Отработанный пар проходит цикл охлаждения и, превращаясь в конденсат, вновь подается в котел.

Снабжение потребителей тепловой и электрической энергией осуществляется теплофикационными станциями, называемыми теплоэлектроцентралями (ТЭЦ). На этих станциях тепловая энергия только частично преобразуется в электрическую, а в основном расходуется на снабжение промышленных предприятий и других потребителей, расположенных в непосредственной близости от электростанций, паром и горячей водой.

Гидроэлектростанции (ГЭС) сооружают на реках, являющихся неиссякаемым источником энергии для электростанций. Они текут с возвышенностей в низины и, следовательно, способны совершать механическую работу. На горных реках сооружают ГЭС, используя естественный напор воды. На равнинных реках напор создается искусственно сооружением плотин, вследствие разности уровней воды по обеим сторонам плотины. Первичными двигателями на ГЭС являются гидротурбины, в которых энергия потока воды преобразуется в механическую энергию.

Вода вращает рабочее колесо гидротурбины и генератор, при этом механическая энергия гидротурбины преобразуется в электрическую, вырабатываемую генератором. Сооружение ГЭС решает кроме задачи выработки электроэнергии также комплекс других задач народнохозяйственного значения - улучшение судоходства рек, орошение и обводнение засушливых земель, улучшение водоснабжения городов и промышленных предприятий.

Атомные электростанции (АЭС) относят к тепловым паротурбинным станциям, работающим не на органическом топливе, а использующим в качестве источника энергии теплоту, получаемую в процессе деления ядер атомов ядерного топлива (горючего), - урана или плутония. На АЭС роль котельных агрегатов выполняют атомные реакторы и парогенераторы.

Электроснабжение потребителей осуществляется преимущественно от электрических сетей, объединяющих ряд электростанций. Параллельная работа электрических станций на общую электрическую сеть обеспечивает рациональное распределение нагрузки между электростанциями, наиболее экономичную выработку электроэнергии, лучшее использование установленной мощности станций, повышение надежности электроснабжения потребителей и отпуска им электроэнергии с нормальными качественными показателями по частоте и напряжению.

Необходимость объединения вызвана неодинаковой нагрузкой электростанций. Спрос потребителей на электроэнергию резко изменяется не только в течение суток, но и в разные времена года. Зимой потребление электроэнергии на освещение возрастает. В сельском хозяйстве электроэнергия в больших количествах нужна летом на полевые работы и орошение.

Разница в степени загрузки станций особо ощутима при значительном отдалении районов потребления электроэнергии друг от друга в направлении с востока на запад, что объясняется разновременностью наступления часов утренних и вечерних максимумов нагрузки. Чтобы обеспечить надежность электроснабжения потребителей и полнее использовать мощность электростанций, работающих в разных режимах, их объединяют в энергетические или электрические системы с помощью электрических сетей высокого напряжения.

Совокупность электростанций, линий электропередачи и тепловых сетей, а также приемников электро- и тепло-энергии, связанных в одно целое общностью режима и непрерывностью процесса производства и потребления электрической и тепловой энергии, называют энергетической системой (энергосистемой). Электрическая система, состоящая из подстанций и линий электропередачи различных напряжений, - часть энергосистемы.

Энергосистемы отдельных районов в свою очередь соединены между собой для параллельной работы и образуют крупные системы, например единая энергетическая система (ЕЭС) европейской части СССР, объединенные системы Сибири, Казахстана, Средней Азии и др.

Теплоэлектроцентрали и заводские электростанции обычно связаны с электросетью ближайшей энергосистемы по линиям генераторного напряжения 6 и 10 кВ или линиям более высокого напряжения (35 кВ и выше) через трансформаторные подстанции. Передача энергии, выработанной мощными районными электростанциями, в электросеть для снабжения потребителей осуществляется по линиям высокого напряжения (110 кВ и выше).



- Производство электрической энергии

по физике

на тему«Производство, передача и использование электроэнергии»

ученицы 11класса А

МОУ школы № 85

Екатерины.

План реферата.

Введение.

1. Производствоэлектроэнергии.

1. типыэлектростанций.

2. альтернативныеисточники энергии.

2. Передачаэлектроэнергии.

трансформаторы.

3. Использованиеэлектроэнергии.

Введение.

Рождение энергетикипроизошло несколько миллионов лет тому назад, когда люди научились использоватьогонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма,оружием против врагов и диких зверей, лечебным средством, помощником вземледелии, консервантом продуктов, технологическим средством и т.д.

Прекрасный миф о Прометее,даровавшем людям огонь, появился в Древней Греции значительно позже того, какво многих частях света были освоены методы довольно изощренного обращения согнем, его получением и тушением, сохранением огня и рациональным использованиемтоплива.

На протяжении многихлет огонь поддерживался путем сжигания растительных энергоносителей (древесины,кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаруженавозможность использовать для поддержания огня ископаемые вещества: каменныйуголь, нефть, сланцы, торф.

На сегодняшний деньэнергия остается главной составляющей жизни человека. Она дает возможностьсоздавать различные материалы, является одним из главных факторов приразработке новых технологий. Попросту говоря, без освоения различных видовэнергии человек не способен полноценно существовать.

Производствоэлектроэнергии.

Типыэлектростанций.

Тепловая электростанция (ТЭС), электростанция, вырабатываю­щая электрическуюэнергию в результате пре­образования тепловой энергии, выделяю­щейся присжигании органического топлива. Первые ТЭС появились в конце 19 века и получилипреимущественное распространение. В середине 70-х годов 20 века ТЭС - основнойвид элек­трической станций.

На тепловыхэлектростанциях химическая энергия топлива преобразуется сначала вмеханическую, а затем в электрическую. Топливомдля такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.

Тепловыеэлектрические стан­ции подразделяют на конденсационные (КЭС),предназначенные для выработки только электрической энергии, и теплоэлектро­централи (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды ипара. Крупные КЭС районного значения получили название государственных районныхэлектро­станций (ГРЭС).

Простейшаяпринципиальная схема КЭС, работающей на угле, представлена на рисунке. Угольподается в топливный бункер 1, а из него - в дробильную установку 2, гдепревраща­ется в пыль. Угольная пыль поступает в топку парогенератора (паровогокотла) 3, имеющего систему трубок, в которых цир­кулирует химически очищеннаявода, называемая питательной. В котле вода нагревается, испаряется, аобразовавшийся насы­щенный пар доводится до температуры 400-650 °С и под дав­лением3-24 МПа поступает по паропроводу в паровую турби­ну 4. Параметры пара зависятот мощности агрегатов.

Тепловые конденсацион­ныеэлектростанции име­ют невысокий кпд (30- 40%), так как большая часть энергиитеряется с отходящими топочными газами и охлаждающей водой конденсатора. СооружатьКЭС выгодно в непосредственной близости от мест добычи топлива. При этомпотребители электроэнергии могут находиться на значи­тельном расстоянии отстан­ции.

Теплоэлектроцентраль отли­чается от конденсационной станции установленной на ней специальнойтеплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затемпоступает в конденсатор 6, а другая, имеющая большую температуру и давление,отбирается от промежуточной ступени турбины и исполь­зуется для теплоснабжения.Конденсат насосом 7 через деаэра­тор 8 и далее питательным насосом 9 подается впарогенератор. Количество отбираемого пара зависит от потребности предприя­тийв тепловой энергии.

Коэффициент полезногодействия ТЭЦ достигает 60-70%. Такие станции строят обычно вблизи потребителей- про­мышленных предприятий или жилых массивов. Чаще всего они работают напривозном топливе.

Значительно меньшеераспространение полу­чили тепловые станции с газотурбинными (ГТЭС), парогазовыми (ПГЭС) и дизельными установками.

Вкамере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания стемпера­турой 750-900 ºС поступают в газо­вую турбину, вращающуюэлектрогене­ратор. Кпд таких ТЭС обычно составляет 26-28%, мощность - донескольких со­тен МВт. ГТЭС обычно применяются для покрытия пиковэлектрической нагрузки. Кпд ПГЭС может достигать 42 - 43%.

Наиболее экономичными яв­ляютсякрупные тепловые паро­турбинные электростанции (сокра­щенно ТЭС). БольшинствоТЭС нашей страны используют в ка­честве топлива угольную пыль. Для выработки 1кВт-ч электроэнергии затрачивается несколько сот грам­мов угля. В паровом котлесвыше 90% выделяемой топливом энергии передается пару. В турбине кине­тическаяэнергия струй пара пере­дается ротору. Вал турбины жестко соединен с валомгенератора.

Современные паровые турбины для ТЭС - весьма совершенные,быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность водновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не являетсяпределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обыч­нонесколько десятков дисков с рабочими лопат­ками и такое же количество, передкаждым диском, групп сопел, через которые протекает струя пара. Давление итемпература пара постепенно снижаются.

Из курса физики из­вестно,что КПД тепловых двига­телей увеличивается с ростом на­чальной температурырабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров:температуру - почти до 550 °С и давление - до 25 МПа. Коэффи­циент полезногодействия ТЭС дости­гает 40%. Большая часть энергии теряется вместе с горячимотрабо­танным паром.

Гидроэлектрическаястанция (ГЭС), комплекссооружений и оборудования, посредством которых энергия потока водыпреобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гид­ротехническихсооружений, обеспечи­вающих необходимую концентрацию по­тока воды и созданиенапора, и энергетического оборудования, преобразующего энергию движущейся поднапором воды в механическую энергию вращения, которая, в свою очередь,преобразуется в электрическую энергию.

НапорГЭС создается концентрацией падения реки на используемом участке плотиной, либодеривацией, либо плотиной и дери­вацией совместно. Основноеэнергетическое оборудование ГЭС размещается в здании ГЭС: в машинном залеэлектростанции - гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления- пульт оператора-диспетчера или автооператор гидро­электростанции. Повышающая транс­форматорная подстанция размещается как внутри зданияГЭС, так и в отдельных зда­ниях или на открытых площадках. Рас­пределительныеустройства зачастую располагаются на открытой площадке. Здание ГЭС можетбыть разделено на секции с одним или несколькими агрегатами и вспомогательнымоборудованием, отделённые от смежных частей здания. При здании ГЭС или внутринего создаётся монтаж­ная площадка для сборки и ремонта раз­личногооборудования и для вспомогательных операций по обслуживанию ГЭС.

Поустановленной мощности (в МВт) различают ГЭС мощные (св. 250), сред­ние (до 25) и малые (до 5). Мощность ГЭС зависит от напора (разности уровнейверхнего и нижнего бьефа), расхода воды, используемого в гидротурбинах,и кпд гидроагрегата. По ряду причин (вследствие, например, сезонных измененийуровня воды в во­доёмах, непостоянства нагрузки энерго­системы, ремонтагидроагрегатов или гидротехнических сооружений и т. п.) напор и расход водынепрерывно меняются, а, кроме того, меняется расход при регули­ровании мощностиГЭС. Различают го­дичный, недельный и суточный циклы режима работы ГЭС.

Помаксимально используемому напо­ру ГЭС делятся на высоконапорные (более60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко пре­вышают 100 м, вгорных условиях посредством плотины можно создавать напоры до 300 м иболее, а с помощью дерива­ции - до 1500 м. Подразделение ГЭС поиспользуемому напору имеет при­близительный, условный характер.

Посхеме использования водных ре­сурсов и концентрации напоров ГЭС обыч­ноподразделяют на русловые , приплотинные , деривационные снапорной и без­напорной деривацией, смешанные, гидроаккумулирующие и приливные .

Врусловых и приплотинных ГЭС напор воды создаётся плотиной, пе­регораживающейреку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некотороезатопление долины реки. Русловые и приплотинныс ГЭС строят и на равнинныхмноговодных реках и на горных реках, в узких сжатых долинах. Для русловых ГЭСхарактерны напоры до 30-40 м.

Приболее высоких напорах оказывает­ся нецелесообразным передавать на зда­ние ГЭСгидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, аздание ГЭС располагается за пло­тиной, примыкает к нижнему бьефу.

Другойвид компоновки приплотинная ГЭС соответствует горным усло­виям присравнительно малых рас­ходах реки.

Вдеривационных ГЭС кон­центрация падения реки создаётся по­средствомдеривации; вода в начале ис­пользуемого участка реки отводится из речного руславодоводом, с уклоном, зна­чительно меньшим, чем средний уклон реки на этомучастке и со спрямлением изги­бов и поворотов русла. Конец деривации подводят кместу расположения здания ГЭС. Отработанная вода либо возвраща­ется в реку,либо подводится к следующей де­ривационной ГЭС. Деривация выгодна тогда, когдауклон реки велик.

Особоеместо среди ГЭС занимают гидроаккумулирующие электростанции (ГАЭС) и приливныеэлектростанции (ПЭС). Сооружение ГАЭС обусловлено ростом потребности впиковой мощности в крупных энергетических системах, что и определяетгенераторную мощность, тре­бующуюся для покрытия пиковых на­грузок. СпособностьГАЭС аккумулиро­вать энергию основана на том, что сво­бодная вэнергосистеме в некоторый пе­риод времени электрическая энергияиспользуется агрегатами ГАЭС, которые, работая в ре­жиме насоса, нагнетают водуиз водохра­нилища в верхний аккумулирующий бас­сейн. В период пиков нагрузкиаккуму­лированная энергия возвращается в энергосистему (вода из верхнего бассей­напоступает в напорный трубопровод и вращает гидроагрегаты, работающие в режимегенератора тока).

ПЭСпреобразуют энергию морских приливов в электрическую. Электроэнер­гия приливныхГЭС в силу некоторых особенностей, связанных с периодичным ха­рактером приливови отливов, может быть использована в энергосистемах лишь совместно с энергией регулирующих электростанций, которые восполняют про­валы мощности приливныхэлектростан­ций в течение суток или месяцев.

Важнейшаяособенность гидроэнергетических ресурсов по сравнению стопливно-энергетическими ресурсами - их непрерывная возобновляемость.Отсутствие потребности в топливе для ГЭС определяет низ­кую себестоимостьвырабатываемой на ГЭС электроэнергии. Поэтому сооруже­нию ГЭС, несмотря назначительные, удельные капиталовложения на 1 кВт установлен­ной мощностии продолжительные сроки строи­тельства, придавалось и придаётся боль­шоезначение, особенно когда это связано с размещением электроёмких производств.

Атомная электростанция (АЭС), электростанция, в которой атомная (ядер­ная) энергия преобразуется вэлект­рическую. Генератором энергии на АЭС является атомный реактор. Тепло,которое выделя­ется в реакторе в результате цепной реакции деления ядернекоторых тяжёлых элементов, затем так же, как и на обыч­ных тепловыхэлектростанциях (ТЭС), преобразуется в электроэнергию. В отли­чие от ТЭС,работающих на органическом топливе, АЭС работает на ядерном горю­чем (воснове 233U, 235U, 239Pu).Установлено, что мировые энергетические ресурсы ядерного горючего (уран,плутоний и др.) существенно превышают энергоресурсы природных запасоворганического, топлива (нефть, уголь, природный газ и др.). Это открываетширокие перспективы для удовлетворе­ния быстро растущих потребностей в топ­ливе.Кроме того, необходимо учиты­вать всё увеличивающийся объём потреб­ления угля инефти для технологических целей мировой химической промышленности, котораястановится серьёзным конкурентом тепло­вых электростанций. Несмотря на откры­тиеновых месторождений органического топ­лива и совершенствование способов егодобычи, в мире наблюдается тенденция к относительному, увеличению егостоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченныезапасы топлива органического происхождения. Очевидна необходимость быстрейшегоразвития атомной энергетики, которая уже занимает заметное место вэнергетическом балансе ряда промышленных стран мира.

Принципиальнаясхема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2.Тепло, выделяемое в активной зоне реактора теплоносителем, вбираетсяводой 1-го контура, которая прокачивается через реактор циркуляционнымнасосом.Нагретая вода из реактора поступает в теплообменник(парогенератор) 3, где передаёт тепло, полученное в реакторе воде 2-гоконтура. Вода 2-го контура испаряется в парогенераторе, и образуется пар,который затем поступает в турбину 4.

Наиболеечасто на АЭС применяют 4 типа реакторов на тепловых нейтронах:

1)водо-водяные с обычной водой в качестве замедлителя и теплоносителя;

2)графитоводные с водяным теплоносителем и графитовым замедлителем;

3)тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя;

4)граффито - газовые с газовым теплоноси­телем и графитовым замедлителем.

Выборпреимущественно применяемого типа реактора определяется главным образом на­копленнымопытом в реактороносителе, а также наличием необходимого промышленного оборудования,сырьевых запасов и т. д.

Креактору и обслуживающим его си­стемам относятся: собственно реактор сбиологическойзащитой, теплообменни­ки, насосы или газодувныеустановки, осуществляющие циркуляцию теплоноси­теля, трубопроводы и арматурациркуляции контура, устройства для перезагруз­ки ядерного горючего, системыспециальной вентиляции, аварийного расхолаживания и др.

Дляпредохранения персонала АЭС от радиационного облучения реактор окружаютбиологической защитой, основным материалом для которой служат бетон, вода,серпантиновый песок. Оборудование реакторного контура должно быть полностьюгерме­тичным. Предусматривается система конт­роля мест возможной утечкитеплоноси­теля, принимают меры, чтобы появление не плотностей и разрывов контуране приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружаю­щейместности. Радиоактивный воздух и не­большое количество паров теплоносителя,обусловленное наличием протечек из контура, удаляют из необслуживаемыхпомещений АЭС специальной системой вентиляции, в которой для исключениявозможно­сти загрязнения атмосферы предусмот­рены очистные фильтры игазгольдеры выдержки. За выполнением правил ра­диационной безопасностиперсоналом АЭС сле­дит служба дозиметрического контроля.

Наличие биологической защиты, систем специальной вентиляции и аварийного расхо­лаживанияи службы дозиметрического контро­ля позволяет полностью обезопаситьобслуживающий персонал АЭС от вред­ных воздействий радиоактивного облу­чения.

АЭС, являющиесянаиболее современным видом электростанций, имеют ряд существенных преимуществперед другими видами электростанций: при нормальных условиях функционированияони абсолютно не загрязняют окружающую среду, не требуют привязки к источникусырья и соответственно могут быть размещены практически везде. Новыеэнергоблоки имеют мощность практически равную мощности средней ГЭС, однакокоэффициент использования установленной мощности на АЭС (80%) значительнопревышает этот показатель у ГЭС или ТЭС.

Значительныхнедостатков АЭС при нормальных условиях функционирования практически не имеют.Однако нельзя не заметить опасность АЭС при возможных форс-мажорныхобстоятельствах: землетрясениях, ураганах, и т. п. - здесь старые моделиэнергоблоков представляют потенциальную опасность радиационного заражениятерриторий из-за неконтролируемого перегрева реактора.

Альтернативныеисточники энергии.

Энергия солнца.

В последнее времяинтерес к проблеме использования солнечной энергии резко возрос, ведь потенциальныевозможности энергетики, основанной на использование непосредственногосолнечного излучения, чрезвычайно велики.

Простейшийколлектор солнечного излучения представляет собой зачерненный металлический(как правило, алюминиевый) лист, внутри которого располагаются трубы сциркулирующей в ней жид­костью. Нагретая за счет солнечной энергии, поглощенной кол­лектором, жидкость поступает для непосредственного использова­ния.

Солнечнаяэнергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение пот­ребности в материалах, а, следовательно, и в трудовых ресурсахдля добычи сырья, его обогащения, получения материалов, изготовлениягелиостатов, коллекторов, другой аппаратуры, их перевозки.

Покаеще электрическая энергия, рожденная солнечными луча­ми, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, чтоэксперименты, которые они прове­дут на опытных установках и станциях, помогутрешить не только технические, но и экономические проблемы.

Ветроваяэнергия.

Огромнаэнергия движущихся воздушных масс. Запасы энергии ветра более чем в сто разпревышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земледуют ветры. Климатические условия позволяют развивать ветроэнергетику наогромной территории.

Нов наши дни двигатели, использующие ветер, покрыва­ют всего одну тысячнуюмировых потребностей в энергии. Потому к созданию конструкцийветроколеса-сердца любой ветроэнергетической установки привлекаютсяспециалисты-са­молетостроители, умеющие выбрать наиболее целесообразный про­фильлопасти, исследовать его в аэродинамической трубе. Усили­ями ученых и инженеровсозданы самые разнообразные конструкции современных ветровых установок.

Энергия Земли.

Издавналюди знают о стихийных проявлениях гигантской энергии, таящейся в недрахземного шара. Память человечества хранит предания о катастрофическихизвержениях вулканов, унес­ших миллионы человеческих жизней, неузнаваемоизменивших облик многих мест на Земле. Мощность извержения даже сравнительнонебольшого вулкана колоссальна, она многократно превышает мощ­ность самыхкрупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить неприходится, нет пока у лю­дей возможностей обуздать эту непокорную стихию.

Энергия Земли пригодна не только для отопленияпомещений, как это происходит в Исландии, но и для получения электроэнергии.Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 годув небольшом итальянском городке Лардерелло. Пос­тепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовалисьновые источники горячей воды, и в наши дни мощность станции достигла ужевнушительной величи­ны-360 тысяч киловатт.

Передачаэлектроэнергии.

Трансформаторы.

Вы приобрелихолодильник ЗИЛ. Продавец вас предупредил, что холодильник рассчитан нанапряжение в сети 220 В. А у вас в доме сетевое напряжение 127 В. Безвыходноеположение? Ничуть. Просто придется сделать дополнительную затрату и приобреститрансформатор.

Трансформатор - очень простое устройство, которое позволяет, как повышать, так и понижатьнапряжение. Преобразование переменного тока осуществляется с помощьютрансформаторов. Впервые трансформаторы были использованы в 1878 г. русскимученым П. Н. Яблочковым для питания изобре­тенных им «электрических свечей» -нового в то время источника света. Идея П. Н. Яблочкова была развитасотрудником Москов­ского университета И. Ф. Усагиным, сконструировавшимусовершенствованные трансформаторы.

Трансформатор состоитиз замкнутого железного сердечника, на который надеты две (иногда и более)катушки с проволочны­ми обмотками (рис. 1). Одна из обмоток, называемая первич­ной,подключается к источнику переменного напряжения. Вторая обмотка, к которойприсоединяют «нагрузку», т. е. приборы и устройства, потребляющиеэлектроэнергию, называется вторич­ной.

Рис.1 Рис.2

Схема устройстватрансформатора с двумя обмотками при­ведена на рисунке 2, а принятое для негоусловное обозначе­ние - на рис. 3.

Действиетрансформатора основано на явлении электромаг­нитной индукции. При прохождениипеременного тока по первич­ной обмотке в железном сердечнике появляетсяпеременный маг­нитный поток, который возбуждает ЭДС индукции в каждой обмотке.Причем мгновенное значение ЭДС индукции е в любом витке первичной или вторичной обмотки согласно закону Фарадеяопределяется формулой:

е = - Δ Ф/ Δ t

ЕслиФ = Ф0соsωt,то

е = ω Ф0 sin ω t , или

е = E sin ω t ,

гдеE =ω Ф0 - амплитуда ЭДС в одном витке.

В первичной обмотке,имеющей п1 витков, полная ЭДС индук­ции e 1 равна п1е.

Во вторичной обмоткеполная ЭДС. е2 равна п2е, где п2 - чис­ло витков этой обмотки.

Отсюда следует, что

e 1 е2 = п1п2 . (1)

Сумманапряжения u 1 , приложенного к первичной обмотке, и ЭДС e 1 должна равняться падению напряжения в первичной обмотке:

u 1 + e 1 = i 1 R 1 , где R 1 - активное сопротивление обмотки, а i 1 - сила тока в ней. Данное уравнение непосредственновытекает из общего урав­нения. Обычно активное сопротивле­ние обмотки мало ичленом i 1 R 1 можно пре­небречь. Поэтому

u 1 ≈ -e 1 . (2)

При разомкнутойвторичной обмотке трансформатора ток в ней не течет, и имеет место соотношение:

u 2 ≈ - e 2 . (3)

Таккак мгновенные значения ЭДС e 1 иe 2 изменяютсясинфазно, то их отношение в формуле (1) можно заменить отношением дей­ствующихзначений E 1 и E 2 этих ЭДС или, учитывая равенства (2) и (3), отношением действующих значенийнапряжений U1 и U2 .

U1 /U2 = E 1 / E 2 = n 1 / n 2 = k . (4)

Величинаk называется коэффициентом трансформации. Ес­ли k >1, то трансформатор является понижающим, при k <1 - повышающим.

При замыкании цепивторичной обмотки в ней течет ток. Тогда соотношение u 2 ≈ - e 2 уже не выполняется точно, и соответ­ственно связь между U1 и U2 становитсяболее сложной, чем в уравнении (4).

Согласно законусохранения энергии, мощность в первичной цепи должна равняться мощности вовторичной цепи:

U1 I 1 = U2 I 2, (5)

где I 1 иI 2 -действующие значения силы в первичной и вто­ричной обмотках.

Отсюда следует, что

U1 /U2 = I 1 / I 2 . (6)

Этоозначает, что, повышая с помощью трансформатора на­пряжение в несколько раз, мыво столько же раз уменьшаем си­лу тока (и наоборот).

Вследствие неизбежныхпотерь энергии на выделение тепла в обмотках и железном сердечнике уравнения(5) и (6) вы­полняются приближенно. Однако в современных мощных транс­форматорахсуммарные потери не превышают 2-3%.

В житейской практикечасто приходится иметь дело с трансформаторами. Кроме тех трансформаторов,которыми мы пользуемся волей-неволей из-за того, что промышленные приборырассчитаны на одно напряжение, а в городской сети используется другое, - кромених приходится иметь дело с бобинами автомобиля. Бобина - это повышающийтрансформатор. Для создания искры, поджигающей рабочую смесь, требуется высокоенапряжение, которое мы и получаем от аккумулятора автомобиля, предварительнопревратив постоянный ток аккумулятора в переменный с помощью прерывателя.Нетрудно сообразить, что с точностью до потерь энергии, идущей на нагреваниетрансформатора, при повышении напряжения уменьшается сила тока, и наоборот.

Для сварочныхаппаратов требуются понижающие трансформаторы. Для сварки нужны очень сильныетоки, и трансформатор сварочного аппарата имеет всего лишь один выходной виток.

Вы, наверное,обращали внимание, что сердечник трансформатора изготовляют из тонких листиковстали. Это сделано для того, чтобы не терять энергии при преобразованиинапряжения. В листовом материале вихревые токи будут играть меньшую роль, чем всплошном.

Дома вы имеете дело смаленькими трансформаторами. Что же касается мощных трансформаторов, то онипредставляют собой огромные сооружения. В этих случаях сердечник с обмоткамипомещен в бак, заполненный охлаждающим маслом.

Передачаэлектроэнергии

Потребителиэлектроэнергии имеются повсюду. Производит­ся же она в сравнительно немногихместах, близких к источникам топливных и гидроресурсов. Поэтому возникает необходимостьпередачи электроэнергии на расстояния, достигающие иногда сотен километров.

Но передачаэлектроэнергии на большие расстояния связана с заметными потерями. Дело в том,что, протекая по линиям электропередачи, ток нагревает их. В соответствии с закономДжоуля - Ленца, энергия, расходуемая на нагрев проводов ли­нии, определяетсяформулой

где R - сопротивление линии. При большой длине линии переда­чаэнергии может стать вообще экономически невыгодной. Для уменьшения потерьможно, конечно, идти по пути уменьшения сопротивления Rлинии посредством увеличения площади попе­речного сечения проводов. Но дляуменьшения R, к примеру, в 100 раз нужно увеличить массу провода такжев 100 раз. Ясно, что нельзя допустить такого большого расходования дорогостоя­щегоцветного металла, не говоря уже о трудностях закрепления тяжелых проводов навысоких мачтах и т. п. Поэтому потери энергии в линии снижают другим путем:уменьшением тока в ли­нии. Например, уменьшение тока в 10 раз уменьшаетколичество выделившегося в проводниках тепла в 100 раз, т. е. достигается тотже эффект, что и от стократного утяжеления провода.

Так как мощность токапропорциональна произведению силы тока на напряжение, то для сохраненияпередаваемой мощности нужно повысить напряжение в линии передачи. Причем, чемдлиннее линия передачи, тем выгоднее использовать более высо­кое напряжение.Так, например, в высоковольтной линии переда­чи Волжская ГЭС - Москваиспользуют напряжение в 500 кв. Между тем генераторы переменного тока строят нанапряжения, не превышающие 16-20 кв., так как бо­лее высокое напряжениепотребовало бы принятия более слож­ных специальных мер для изоляции обмоток идругих частей генераторов.

Поэтому на крупныхэлектростанциях ставят повышающие трансформаторы. Трансформатор увеличиваетнапряжение в ли­нии во столько же раз, во сколько уменьшает силу тока. Потеримощности при этом невелики.

Для непосредственногоиспользования электроэнергии в дви­гателях электропривода станков, восветительной сети и для дру­гих целей напряжение на концах линии нужнопонизить. Это до­стигается с помощью понижающих трансформаторов. Причем обычнопонижение напряжения и соответственно увеличение силы тока происходит внесколько этапов. На каждом этапе напряжение становится все меньше, атерритория, охватываемая электрической сетью, - все шире. Схема передачи ираспределения электроэнергии приведена на рисунке.

Электрические станцииряда областей страны соединены высоковольтными линиями передач, образуя общуюэлектросеть, к которой присоединены потребители. Такое объединение называетсяэнергосистемой. Энергосистема обеспечивает бесперебойность подачи энергиипотребителям не зависимо от их месторасположения.

Использованиеэлектроэнергии.

Использованиеэлектроэнергетики в различных областях науки.

ХХ век стал веком,когда наука вторгается во все сферы жизни общества: экономику, политику,культуру, образование и т.д. Естественно, что наука непосредственно влияет наразвитие энергетики и сферу применения электроэнергии. С одной стороны наукаспособствует расширению сферы применения электрической энергии и тем самымувеличивает ее потребление, но с другой стороны в эпоху, когда неограниченноеиспользование невозобновляемых энергетических ресурсов несет опасность длябудущих поколений, актуальными задачами науки становятся задачи разработкиэнергосберегающих технологий и внедрение их в жизнь.

Рассмотрим этивопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валовогопродукта) развитых стран достигается за счет технических инноваций, основнаячасть которых связана с использованием электроэнергии. Все новое впромышленность, сельское хозяйство и быт приходит к нам благодаря новымразработкам в различных отраслях науки.

Большая часть научныхразработок начинается с теоретических расчетов. Но если в ХIХ веке эти расчетыпроизводились с помощью пера и бумаги, то в век НТР (научно-техническойреволюции) все теоретические расчеты, отбор и анализ научных данных и дажелингвистический разбор литературных произведений делаются с помощью ЭВМ(электронно-вычислительных машин), которые работают на электрической энергии,наиболее удобной для передачи ее на расстояние и использования. Но еслипервоначально ЭВМ использовались для научных расчетов, то теперь из наукикомпьютеры пришли в жизнь.

Сейчас онииспользуются во всех сферах деятельности человека: для записи и храненияинформации, создания архивов, подготовки и редактирования текстов, выполнениячертежных и графических работ, автоматизации производства и сельскогохозяйства. Электронизация и автоматизация производства - важнейшие последствия«второй промышленной» или «микроэлектронной» революции вэкономике развитых стран. С микроэлектроникой непосредственно связано и развитиекомплексной автоматизации, качественно новый этап которой начался послеизобретения в 1971 году микропроцессора - микроэлектронного логическогоустройства, встраиваемого в различные устройства для управления их работой.

Микропроцессорыускорили рост робототехники. Большинство применяемых ныне роботов относится ктак называемому первому поколению, и применяются при сварке, резании,прессовке, нанесении покрытий и т.д. Приходящие им на смену роботы второгопоколения оборудованы устройствами для распознавания окружающей среды. Ароботы-«интеллектуалы» третьего поколения будут «видеть»,«чувствовать», «слышать». Ученые и инженеры среди наиболееприоритетных сфер применения роботов называют атомную энергетику, освоениекосмического пространства, транспорта, торговлю, складское хозяйство,медицинское обслуживание, переработку отходов, освоение богатств океаническогодна. Основная часть роботов работают на электрической энергии, но увеличениепотребления электроэнергии роботами компенсируется снижением энергозатрат вомногих энергоемких производственных процессах за счет внедрения болеерациональных методов и новых энергосберегающих технологических процессов.

Но вернемся к науке.Все новые теоретические разработки после расчетов на ЭВМ проверяютсяэкспериментально. И, как правило, на этом этапе исследования проводятся спомощью физических измерений, химических анализов и т.д. Здесь инструментынаучных исследований многообразны - многочисленные измерительные приборы,ускорители, электронные микроскопы, магниторезонансные томографы и т.д.Основная часть этих инструментов экспериментальной науки работают наэлектрической энергии.

Очень бурноразвивается наука в области средств связи и коммуникаций. Спутниковая связьиспользуется уже не только как средство международной связи, но и в быту - спутниковые антенны не редкость и в нашем городе. Новые средства связи, напримерволоконная техника, позволяют значительно снизить потери электроэнергии впроцессе передачи сигналов на большие расстояния.

Не обошла наука исферу управления. По мере развития НТР, расширения производственной инепроизводственной сфер деятельности человека, все более важную роль вповышении их эффективности начинает играть управление. Из своего родаискусства, еще недавно основывавшегося на опыте и интуиции, управление в нашидни превратилось в науку. Наука об управлении, об общих законах получения,хранения, передачи и переработки информации называется кибернетикой. Этоттермин происходит от греческих слов «рулевой», «кормчий».Он встречается в трудах древнегреческих философов. Однако новое рождение егопроизошло фактически в 1948 году, после выхода книги американского ученогоНорберта Винера «Кибернетика».

До начала«кибернетической» революции существовала только бумажная Информатика,основным средством восприятия которой оставался человеческий мозг, и которая неиспользовала электроэнергию. «Кибернетическая» революция породилапринципиально иную - машинную информатику, соответствующую гигантски возросшимпотокам информации, источником энергии для которой служит электроэнергия.Созданы совершенно новые средства получения информации, ее накопления,обработки и передачи, в совокупности образующие сложную информационнуюструктуру. Она включает АСУ (автоматизированные системы управления),информационные банки данных, автоматизированные информационные базы,вычислительные центры, видеотерминалы, копировальные и фототелеграфныеаппараты, общегосударственные информационные системы, системы спутниковой искоростной волокнисто-оптической связи - все это неограниченно расширило сферуиспользования электроэнергии.

Многие ученыесчитают, что в данном случае речь идет о новой «информационной»цивилизации, приходящей на смену традиционной организации обществаиндустриального типа. Такая специализация характеризуется следующими важными признаками:

· широкимраспространением информационной технологии в материальном и нематериальномпроизводстве, в области науки, образования, здравоохранения и т.д.;

· наличиемширокой сети различных банков данных, в том числе общественного пользования;

· превращениеинформации в один из важнейших факторов экономического, национального и личногоразвития;

· свободнойциркуляцией информации в обществе.

Такой переход отиндустриального общества к «информационной цивилизации» стал возможенво многом благодаря развитию энергетики и обеспечению удобным в передаче иприменении видом энергии - электрической энергией.

Электроэнергияв производстве.

Современное обществоневозможно представить без электрификации производственной деятельности. Уже вконце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось ввиде электрической энергии. К началу следующего века эта доля может увеличитьсядо 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом еепотребления в промышленности. Основная часть промышленных предприятий работаетна электрической энергии. Высокое потребление электроэнергии характерно длятаких энергоемких отраслей, как металлургия, алюминиевая и машиностроительнаяпромышленность.

Электроэнергияв быту.

Электроэнергия в бытунеотъемлемый помощник. Каждый день мы имеем с ней дело, и, наверное, уже непредставляем свою жизнь без нее. Вспомните, когда последний раз вам отключалисвет, то есть в ваш дом не поступала электроэнергия, вспомните, как выругались, что ничего не успеваете и вам нужен свет, вам нужен телевизор, чайники куча других электроприборов. Ведь если нас обесточить навсегда, то мы простовернемся в те давние времена, когда еду готовили на костре и жили в холодныхвигвамах.

Значимостиэлектроэнергии в нашей жизни можно посветить целую поэму, настолько она важна внашей жизни и настолько мы привыкли к ней. Хотя мы уже и не замечаем, что онапоступает к нам в дома, но когда ее отключают, становится очень не комфортно.

Ценитеэлектроэнергию!

Списокиспользуемой литературы.

1. УчебникС.В.Громова «Физика, 10 класс». Москва: Просвещение.

2. Энциклопедическийсловарь юного физика. Состав. В.А. Чуянов, Москва: Педагогика.

3. ЭллионЛ., Уилконс У… Физика. Москва: Наука.

4. КолтунМ. Мир физики. Москва.

5. Источникиэнергии. Факты, проблемы, решения. Москва: Наука и техника.

6. Нетрадиционныеисточники энергии. Москва: Знание.

7. ЮдасинЛ.С… Энергетика: проблемы и надежды. Москва: Просвещение.

8. ПодгорныйА.Н. Водородная энергетика. Москва: Наука.

Поделитесь с друзьями или сохраните для себя:

Загрузка...