Почему мы отказались от производства оружейного плутония? Что такое плутоний Производство оружейного плутония.

Химия

Плутоний Pu - элемент № 94 связаны очень большие надежды и очень большие опасения человечества. В наши дни это один из самых важных, стратегически важных, элементов. Это самый дорогой из технически важных металлов - он намного дороже серебра, золота и платины. Он поистине драгоценен.


Предыстория и история

Вначале были протоны - галактический водород . В результате его сжатия и последовавших затем ядерных реакций образовались самые невероятные «слитки» нуклонов. Среди них, этих «слитков», были, по-видимому, и содержащие по 94 протона. Оценки теоретиков позволяют считать, что около 100 нуклонных образований, в состав которых входят 94 протона и от 107 до 206 нейтронов, настолько стабильны, что их можно считать ядрами изотопов элемента № 94.
Но все эти изотопы - гипотетические и реальные - не настолько стабильны, чтобы сохраниться до наших дней с момента образования элементов солнечной системы. Период полураспада самого долгоживущего изотопа элемента №94 - 81 млн. лет. Возраст Галактики измеряется миллиардами лет. Следовательно, у «первородного» плутония не было шансов дожить до наших дней. Если он и образовывался при великом синтезе элементов Вселенной, то те давние его атомы давно «вымерли», подобно тому как вымерли динозавры и мамонты.
В XX в. новой эры, нашей эры, этот элемент был воссоздан. Из 100 возможных изотопов плутония синтезированы 25. У 15 из них изучены ядерные свойства. Четыре нашли практическое применение. А открыли его совсем недавно. В декабре 1940 г. при облучении урана ядрами тяжелого водорода группа американских радиохимиков во главе с Гленном Т. Сиборгом обнаружила неизвестный прежде излучатель альфа-частиц с периодом полураспада 90 лет. Этим излучателем оказался изотоп элемента № 94 с массовым числом 238. В том же году, но несколькими месяцами раньше Э.М. Макмиллан и Ф. Эйбельсон получили первый элемент, более тяжелый, чем уран, - элемент № 93. Этот элемент назвали нептунием , а 94-й - плутонием. Историк определенно скажет, что названия эти берут начало в римской мифологии, но в сущности происхождение этих названий скорее не мифологическое, а астрономическое.
Элементы № 92 и 93 названы в честь далеких планет солнечной системы - Урана и Нептуна, но и Нептун в солнечной системе - не последний, еще дальше пролегает орбита Плутона - планеты, о которой до сих пор почти ничего не известно... Подобное же построение наблюдаем и на «левом фланге» менделеевской таблицы: uranium - neptunium - plutonium, однако о плутонии человечество знает намного больше, чем о Плутоне. Кстати, Плутон астрономы открыли всего за десять лет до синтеза плутония - почти такой же отрезок времени разделял открытия Урана - планеты и урана - элемента.


Загадки для шифровальщиков

Первый изотоп элемента № 94 - плутоний-238 в наши дни нашел практическое применение. Но в начале 40-х годов об этом и не думали. Получать плутоний-238 в количествах, представляющих практический интерес, можно, только опираясь на мощную ядерную промышленность. В то время она лишь зарождалась. Но уже было ясно, что, освободив энергию, заключенную в ядрах тяжелых радиоактивных элементов, можно получить оружие невиданной прежде силы. Появился Манхэттенский проект, не имевший ничего, кроме названия, общего с известным районом Нью-Йорка. Это было общее название всех работ, связанных с созданием в США первых атомных бомб. Руководителем Манхэттенского проекта был назначен не ученый, а военный - генерал Гровс, «ласково» величавший своих высокообразованных подопечных «битыми горшками».
Руководителей «проекта» плутоний-238 не интересовал. Его ядра, как, впрочем, ядра всех изотопов плутония с четными массовыми числами, нейтронами низких энергий не делятся, поэтому он не мог служить ядерной взрывчаткой. Тем не менее первые не очень внятные сообщения об элементах № 93 и 94 попали в печать лишь весной 1942 г.
Чем это объяснить? Физики понимали: синтез изотопов плутония с нечетными массовыми числами - дело времени, и недалекого. От нечетных изотопов ждали, что, подобно урану-235, они смогут поддерживать цепную ядерную реакцию. В них, еще не полученных, кое-кому виделась потенциальная ядерная взрывчатка. И эти надежды плутоний , к сожалению, оправдывал.
В шифровках того времени элемент № 94 именовался не иначе, как... медью . А когда возникла необходимость в самой меди (как конструкционном материале для каких-то деталей), то в шифровках наряду с «медью» появилась «подлинная медь».

«Древо познания добра и зла»

В 1941 г. был открыт важнейший изотоп плутония - изотоп с массовым числом 239. И почти сразу же подтвердилось предсказание теоретиков: ядра плутония-239 делились тепловыми нейтронами. Более того, в процессе их деления рождалось не меньшее число нейтронов, чем при делении урана-235. Тотчас же были намечены пути получения этого изотопа в больших количествах...
Прошли годы. Теперь уже ни для кого не секрет, что ядерные бомбы, хранящиеся в арсеналах, начинены плутонием-239 и что их, этих бомб, достаточно, чтобы нанести непоправимый ущерб всему живому на Земле.
Распространено мнение, что с открытием цепной ядерной реакции (неизбежным следствием которого стало создание ядерной бомбы) человечество явно поторопилось. Можно думать по-другому или делать вид, что думаешь по-другому, - приятнее быть оптимистом. Но и перед оптимистами неизбежно встает вопрос об ответственности ученых. Мы помним триумфальный июньский день 1954 г., день, когда дала ток первая атомная электростанция в Обнинске. Но мы не можем забыть и августовское утро 1945 г. - «утро Хиросимы», «черный день Альберта Эйнштейна»... Помним первые послевоенные годы и безудержный атомный шантаж - основу американской политики тех лет. А разве мало тревог пережило человечество в последующие годы? Причем эти тревоги многократно усиливались сознанием, что, если вспыхнет новая мировая война, ядерное оружие будет пущено в ход.
Здесь можно попробовать доказать, что открытие плутония не прибавило человечеству опасений, что, напротив, оно было только полезно.
Допустим, случилось так, что по какой-то причине или, как сказали бы в старину, по воле божьей, плутоний оказался недоступен ученым. Разве уменьшились бы тогда наши страхи и опасения? Ничуть не бывало. Ядерные бомбы делали бы из урана-235 (и в не меньшем количестве, чем из плутония), и эти бомбы «съедали» бы еще большие, чем сейчас, части бюджетов.
Зато без плутония не существовало бы перспективы мирного использования ядерной энергии и больших масштабах. Для «мирного атома» просто не хватило бы урана-235. Зло, нанесенное человечеству открытием ядерной энергии, не уравновешивалось бы, пусть даже частично, достижениями «доброго атома».

Как измерить, с чем сравнить

Когда ядро плутония-239 делится нейтронами на два осколка примерно равной массы, выделяется около 200 Мэв энергии. Это в 50 млн. раз больше энергии, освобождающейся в самой известной экзотермической реакции С + O 2 = СO 2 . «Сгорая» в ядерном реакторе, грамм плутония дает 2 107 ккал. Чтобы не нарушать традиции (а в популярных статьях энергию ядерного горючего принято измерять внесистемными единицами - тоннами угля, бензина, тринитротолуола и т. д.), заметим и мы: это энергия, заключенная в 4 т угля. А в обычный наперсток помещается количество плутония, энергетически эквивалентное сорока вагонам хороших березовых дров.
Такая же энергия выделяется и при делении нейтронами ядер урана-235. Но основную массу природного урана (99,3%!) составляет изотоп 238 U, который можно использовать, только превратив уран в плутоний...

Энергия камней

Оценим энергетические ресурсы, заключенные в природных запасах урана.
Уран - рассеянный элемент, и практически он есть всюду. Каждому, кто побывал, к примеру, в Карелии, наверняка запомнились гранитные валуны и прибрежные скалы. Но мало кто знает, что в тонне гранита до 25 г урана. Граниты составляют почти 20% веса земной коры. Если считать только уран-235, то в тонне гранита заключено 3,5-105 ккал энергии. Это очень много, но...
На переработку гранита и извлечение из него урана нужно затратить еще большее количество энергии - порядка 106-107 ккал/т. Вот если бы удалось в качестве источника энергии использовать не тол ко уран-235, а и уран-238, тогда гранит можно было бы рассматривать хотя бы как потенциальное энергетическое сырье. Тогда энергия, полученная из тонны камня, составила бы уже от 8-107 до 5-108 ккал. Это равноценно 16-100 т угля. И в этом случае гранит мог бы дать людям почти в миллион раз больше энергии, чем все запасы химического топлива на Земле.
Но ядра урана-238 нейтронами не делятся. Для атомной энергетики этот изотоп бесполезен. Точнее, был бы бесполезен, если бы его не удалось превратить в плутоний-239. И что особенно важно: на это ядерное превращение практически не нужно тратить энергию - напротив, в этом процессе энергия производится!
Попробуем разобраться, как это происходит, но вначале несколько слов о природном плутонии.

В 400 тысяч раз меньше, чем радия

Уже говорилось, что изотопы плутония не сохранились со времени синтеза элементов при образовании нашей планеты. Но это не означает, что плутония в Земле нет.
Он все время образуется в урановых рудах. Захватывая нейтроны космического излучения и нейтроны, образующиеся при самопроизвольном (спонтанном) делении ядер урана-238, некоторые - очень немногие - атомы этого изотопа превращаются в атомы урана-239. Эти ядра очень нестабильны, они испускают электроны и тем самым повышают свой заряд. Образуется нептуний - первый трансурановый элемент. Нептуний-239 тоже весьма неустойчив, и его ядра испускают электроны. Всего за 56 часов половина нептуния-239 превращается в плутоний-239, период полураспада которого уже достаточно велик - 24 тыс. лет.
Почему не добывают плутоний из урановых руд ? Мала, слишком мала концентрация. «В грамм добыча - в год труды» - это о радии , а плутония в рудах содержится в 400 тыс. раз меньше, чем радия. Поэтому не только добыть - даже обнаружить «земной» плутоний необыкновенно трудно. Сделать это удалось только после того, как были изучены физические и химические свойства плутония, полученного в атомных реакторах.
Накапливают плутоний в ядерных реакторах. В мощных потоках нейтронов происходит та же реакция, что и в урановых рудах, но скорость образования и накопления плутония в реакторе намного выше - в миллиард миллиардов раз. Для реакции превращения балластного урана-238 в энергетический плутоний-239 создаются оптимальные (в пределах допустимого) условия.
Если реактор работает на тепловых нейтронах (напомним, что их скорость - порядка 2000 м в секунду, а энергия - доли электронвольта), то из естественной смеси изотопов урана получают количество плутония, немногим меньшее, чем количество «выгоревшего» урана-235. Немногим, но меньшее, плюс неизбежные потери плутония при химическом выделении его из облученного урана. К тому же цепная ядерная реакция подцеживается в природной смеси изотопов урана только до тех пор, пока не израсходована незначительная доля урана-235. Отсюда закономерен вывод: «тепловой» реактор на естественном уране - основной тип ныне действующих реакторов - не может обеспечить расширенного воспроизводства ядерного горючего. Но что же тогда перспективно? Для ответа на этот вопрос сравним ход цепной ядерной реакции в уране-235 и плутонии-239 и введем в наши рассуждения еще одно физическое понятие.
Важнейшая характеристика любого ядерного горючего - среднее число нейтронов, испускаемых после того, как ядро захватило один нейтрон. Физики называют его эта-числом и обозначают греческой буквой ц. В «тепловых» реакторах на уране наблюдается такая закономерность: каждый нейтрон порождает в среднем 2,08 нейтрона (η=2,08). Помещенный в такой реактор плутоний под действием тепловых нейтронов дает η=2,03. Но есть еще реакторы, работающие на быстрых нейтронах. Естественную смесь изотопов урана в такой реактор загружать бесполезно: цепная реакция не пойдет. Но если обогатить «сырье» ураном-235, она сможет развиваться и в «быстром» реакторе. При этом ц будет равно уже 2,23. А плутоний, помещенный под обстрел быстрыми нейтронами, даст η равное 2,70. В наше распоряжение поступит «лишних полнейтрона». И это совсем не мало.


Проследим, на что тратятся полученные нейтроны. В любом реакторе один нейтрон нужен для поддержания цепной ядерной реакции. 0,1 нейтрона поглощается конструкционными материалами установки. «Избыток» идет на накопление плутония-239. В одном случае «избыток» равен 1,13, в другом - 1,60. После «сгорания» килограмма плутония в «быстром» реакторе выделяется колоссальная энергия и накапливается 1,6 кг плутония. А уран и в «быстром» реакторе даст туже энергию и 1,1 кг нового ядерного горючего. И в том и в другом случае налицо расширенное воспроизводство. Но нельзя забывать об экономике.
В силу ряда технических причин цикл воспроизводства плутония занимает несколько лет. Допустим, что пять лет. Значит, в год количество плутония увеличится только на 2%, если η=2,23, и на 12%, если η=2,7! Ядерное горючее - капитал, а всякий капитал должен давать, скажем, 5% годовых. В первом случае налицо большие убытки, а во втором - большая прибыль. Этот примитивный пример иллюстрирует «вес» каждой десятой числа в ядерной энергетике.
Важно и другое. Ядерная энергетика должна поспевать за ростом потребности в энергии. Расчеты показывают: его условие выполнимо в будущем только тогда, когда η приближается к трем. Если же развитие ядерных энергетических источников будет отставать от потребностей общества в энергии, то останется два пути: либо «затормозить прогресс», либо брать энергию из каких-то других источников. Они известны: термоядерный синтез, энергия аннигиляции вещества и антивещества, но пока еще технически недоступны. И не известно, когда они будут реальными источниками энергии для человечества. А энергия тяжелых ядер уже давно стала для нас реальностью, и сегодня у плутония как главного «поставщика» энергии атома нет серьезных конкурентов, кроме, может быть, урана-233.


Сумма многих технологий

Когда в результате ядерных реакций в уране накопится необходимое количество плутония, его необходимо отделить не только от самого урана, но и от осколков деления - как урана, так и плутония, выгоревших в цепной ядерной реакции. Кроме того, в урано-плутониевой массе есть и некоторое количество нептуния. Сложнее всего отделить плутоний от нептуния и редкоземельных элементов (лантаноидов). Плутонию как химическому элементу в какой-то мере не повезло. С точки зрения химика, главный элемент ядерной энергетики - всего лишь один из четырнадцати актиноидов. Подобно редкоземельным элементам, все элементы актиниевого ряда очень близки между собой по химическим свойствам, строение внешних электронных оболочек атомов всех элементов от актиния до 103-го одинаково. Еще неприятнее, что химические свойства актиноидов подобны свойствам редкоземельных элементов, а среди осколков деления урана и плутония лантаноидов хоть отбавляй. Но зато 94-й элемент может находиться в пяти валентных состояниях, и это «подслащивает пилюлю» - помогает отделить плутоний и от урана, и от осколков деления.
Валентность плутония меняется от трех до семи. Химически наиболее стабильны (а следовательно, наиболее распространены и наиболее изучены) соединения четырехвалентного плутония.
Разделение близких по химическим свойствам актиноидов - урана, нептуния и плутония - может быть основано на разнице в свойствах их четырех- и шестивалентных соединений.


Нет нужды подробно описывать все стадии химического разделения плутония и урана. Обычно разделение их начинают с растворения урановых брусков в азотной кислоте, после чего содержащиеся в растворе уран, нептуний, плутоний и осколочные элементы «разлучают», применяя для этого уже традиционные радиохимические методы - осаждение, экстракцию, ионный обмен и другие. Конечные плутонийсодержащие продукты этой многостадийной технологии - его двуокись PuO 2 или фториды - PuF 3 или PuF 4 . Их восстанавливают до металла парами бария , кальция или лития . Однако полученный в этих процессах плутоний не годится на роль конструкционного материала - тепловыделяющих элементов энергетических ядерных реакторов из него не сделать, заряда атомной бомбы не отлить. Почему? Температура плавления плутония - всего 640°С - вполне достижима.
При каких бы «ультращадящих» режимах ни отливали детали из чистого плутония, в отливках при затвердевании всегда появятся трещины. При 640°С твердеющий плутоний образует кубическую кристаллическую решетку. По мере уменьшения температуры плотность металла постепенно растет. Но вот температура достигла 480°С, и тут неожиданно плотность плутония резко падает. До причин этой аномалии докопались довольно быстро: при этой температуре атомы плутония перестраиваются в кристаллической решетке. Она становится тетрагональной и очень «рыхлой». Такой плутоний может плавать в собственном расплаве, как лед на воде.
Температура продолжает падать, вот она достигла 451°С, и атомы снова образовали кубическую решетку, но расположились на большем, чем в первом случае, расстоянии друг от друга. При дальнейшем охлаждении решетка становится сначала орторомбической, затем моноклинной. Всего плутоний образует шесть различных кристаллических форм! Две из них отличаются замечательным свойством - отрицательным коэффициентом температурного расширения: с ростом температуры металл не расширяется, а сжимается.
Когда температура достигает 122°С и атомы плутония в шестой раз перестраивают свои ряды, плотность меняется особенно сильно - от 17,77 до 19,82 г/см 3 . Больше, чем на 10%!
Соответственно уменьшается объем слитка. Если против напряжений, возникавших на других переходах, металл еще мог устоять, то в этот момент разрушение неизбежно.
Как же тогда изготовить детали из этого удивительного металла? Металлурги легируют плутоний (добавляют в него незначительные количества нужных элементов) и получают отливки без единой трещины. Из них и делают плутониевые заряды ядерных бомб. Вес заряда (он определяется прежде всего критической массой изотопа) 5-6 кг. Он без труда поместился бы в кубике с размером ребра 10 см.

Тяжелые изотопы плутония

В плутонии-239 в незначительном количестве содержатся и высшие изотопы этого элемента - с массовыми числами 240 и 241. Изотоп 240 Pu практически бесполезен - это балласт в плутонии. Из 241-го получают америций - элемент № 95. В чистом виде, без примеси других изотопов, плутоний-240 и плутоний-241 можно получить при электромагнитном разделении плутония, накопленного в реакторе. Перед этим плутоний дополнительно облучают нейтронными потоками со строго определенными характеристиками. Конечно, все это очень сложно, тем более что плутоний не только радиоактивен, но и весьма токсичен. Работа с ним требует исключительной осторожности.
Один из самых интересных изотопов плутония - 242 Pu можно получить, облучая длительное время 239 Pu в потоках нейтронов. 242 Pu очень редко захватывает нейтроны и потому «выгорает» в реакторе медленнее остальных изотопов; он сохраняется и после того, как остальные изотопы плутония почти полностью перешли в осколки или превратились в плутоний-242.
Плутоний-242 важен как «сырье» для сравнительно быстрого накопления высших трансурановых элементов в ядерных реакторах. Если в обычном реакторе облучать плутоний-239, то на накопление из граммов плутония микрограммовых количеств, к примеру, калифорния-252 потребуется около 20 лет.
Можно сократить время накопления высших изотопов, увеличив интенсивность потока нейтронов в реакторе. Так и делают, но тогда нельзя облучать большое количество плутония-239. Ведь этот изотоп делится нейтронами, и в интенсивных потоках выделяется слишком много энергии. Возникают дополнительные сложности с охлаждением реактора. Чтобы избежать этих сложностей, пришлось бы уменьшить количество облучаемого плутония. Следовательно, выход калифорния стал бы снова мизерным. Замкнутый круг!
Плутоний-242 тепловыми нейтронами не делится, его и в больших количествах можно облучать в интенсивных нейтронных потоках... Поэтому в реакторах из этого изотопа «делают» и накапливают в весовых количествах все элементы от америция до фермия .
Всякий раз, когда ученым удавалось получить новый изотоп плутония, измеряли период полураспада его ядер. Периоды полураспада изотопов тяжелых радиоактивных ядер с четными массовыми числами меняются закономерно. (Этого нельзя сказать о нечетных изотопах.)
С увеличением массы растет и «время жизни» изотопа. Несколько лет назад высшей точкой этого графика был плутоний-242. А дальше как пойдет эта кривая - с дальнейшим ростом массового числа? В точку 1, которая соответствует времени жизни 30 млн. лет, или в точку 2, которая отвечает уже 300 млн. лет? Ответ на этот вопрос был очень важен для наук о Земле. В первом случае, если бы 5 млрд, лет назад Земля целиком состояла из 244 Pu, сейчас во всей массе Земли остался бы только один атом плутония-244. Если же верно второе предположение, то плутоний-244 может быть в Земле в таких концентрациях, которые уже можно было бы обнаружить. Если бы посчастливилось найти в Земле этот изотоп, наука получила бы ценнейшую информацию о процессах, происходивших при формировании нашей планеты.

Периоды полураспада некоторых изотопов плутония

Несколько лет назад перед учеными встал вопрос: стоит ли пытаться найти тяжелый плутоний в Земле? Для ответа на него нужно было прежде всего определить период полураспада плутония-244. Теоретики не могли рассчитать эту величину с нужной точностью. Вся надежда была только на эксперимент.
Плутоний-244 накопили в ядерном реакторе. Облучали элемент № 95 - америций (изотоп 243 Am). Захватив нейтрон, этот изотоп переходил в америций-244; америций- 244 в одном из 10 тыс. случаев переходил в плутоний-244.
Из смеси америция с кюрием выделили препарат плутония-244. Образец весил всего несколько миллионных долей грамма. Но их хватило для того чтобы определить период полураспада этого интереснейшего изотопа. Он оказался равным 75 млн. лет. Позже другие исследователи уточнили период полураспада плутония-244, но ненамного - 81 млн. лет. В 1971 г. следы этого изотопа нашли в редкоземельном минерале бастнезите .
Много попыток предпринимали ученые, чтобы найти изотоп трансуранового элемента, живущий дольше, чем 244 Pu. Но все попытки остались тщетными. Одно время возлагали надежды на кюрий-247, но после того, как этот изотоп был накоплен в реакторе, выяснилось, что его период полураспада всего 16 млн. лет. Побить рекорд плутония-244 не удалось, - это самый долгоживущий из всех изотопов трансурановых элементов.
Еще более тяжелые изотопы плутония подвержены бета-распаду, и их время жизни лежит в интервале от нескольких дней до нескольких десятых секунды. Мы знаем наверное, что в термоядерных взрывах образуются все изотопы плутония, вплоть до 257 Pu. Но их время жизни - десятые доли секунды, и изучить многие короткоживущие изотопы плутония пока не удалось.


Возможности первого изотопа плутония

И напоследок - о плутонии-238 - самом первом из «рукотворных» изотопов плутония, изотопе, который вначале казался бесперспективным. В действительности это очень интересный изотоп. Он подвержен альфа-распаду, т. е. его ядра самопроизвольно испускают альфа-частицы - ядра гелия. Альфа-частицы, порожденные ядрами плутония-238, несут большую энергию; рассеявшись в веществе, эта энергия превращается в тепло. Как велика эта энергия? Шесть миллионов электронвольт освобождается при распаде одного атомного ядра плутония-238. В химической реакции та же энергия выделяется при окислении нескольких миллионов атомов. В источнике электричества, содержащем один килограмм плутония-238, развивается тепловая мощность 560 ватт. Максимальная мощность такого же по массе химического источника тока - 5 ватт.
Существует немало излучателей с подобными энергетическими характеристиками, но одна особенность плутония-238 делает этот изотоп незаменимым. Обычно альфа- распад сопровождается сильным гамма-излучением, проникающим через большие толщи вещества. 238 Pu - исключение. Энергия гамма-квантов, сопровождающих распад его ядер, невелика, защититься от нее несложно: излучение поглощается тонкостенным контейнером. Мала и вероятность самопроизвольного деления ядер этого изотопа. Поэтому он нашел применение не только в источниках тока, но и в медицине. Батарейки с плутонием-238 служат источником энергии в специальных стимуляторах сердечной деятельности.
Но 238 Pu не самый легкий из известных изотопов элемента № 94, получены изотопы плутония с массовыми числами от 232 до 237. Период полураспада самого легкого изотопа - 36 минут.

Плутоний - большая тема. Здесь рассказано главное из самого главного. Ведь уже стала стандартной фраза, что химия плутония изучена гораздо лучше, чем химия таких «старых» элементов, как железо . О ядерных свойствах плутония написаны целые книги. Металлургия плутония - еще один удивительный раздел человеческих знаний... Поэтому не нужно думать, что, прочитав этот рассказ, вы по-настоящему узнали плутоний - важнейший металл XX в.

  • КАК ВОЗЯТ ПЛУТОНИЙ. Радиоактивный и токсичный плутоний требует особой осторожности при перевозке. Сконструирован контейнер специально для его транспортировки - контейнер, который не разрушается даже при авиационных катастрофах. Сделан он довольно просто: это толстостенный сосуд из нержавеющей стали, окруженный оболочкой из красного дерева. Очевидно, плутоний того стоит, но прпредставьте, какой толщины должны быть стенки, если известно, что контейнер для перевозки всего двух килограммов плутония весит 225 кг!
  • ЯД И ПРОТИВОЯДИЕ. 20 октября 1977 г. агентство «Франс Пресс» сообщило: найдено химическое соединение, способное выводить из организма человека плутоний. Через несколько лет об этом соединении стало известно довольно многое. Это комплексное соединение - линейный катехинамид карбоксилазы, вещество класса хелатов (от греческого - «хела» - клешня). В эту химическую клешню и захватывается атом плутония, свободный или связанный. У лабораторных мышей с помощью этого вещества из организма выводили до 70% поглощенного плутония. Полагают, что в дальнейшем это соединение поможет извлекать плутоний и из отходов производства, и из ядерного горючего.

Существует 15 известных изотопов плутония. Самый важный из них – Pu-239 с периодом полураспада 24360 лет. Удельная масса плутония составляет 19,84 при температуре 25оС. Металл начинает плавиться при температуре 641оС, закипает при 3232оС. Его валентность бывает 3, 4, 5 или 6.

У металла серебристый оттенок, и он желтеет при взаимодействии с кислородом. Плутоний – химический реактивный металл и легко растворяется в концентрированной соляной , в хлорной кислоте, в йодисто-водородной кислоте. При -распаде металл выделяет энергию тепла.

Плутоний - открытый вторым по счету трансурановый актинид. В природе этот металл можно обнаружить в небольших количествах в уранических рудах.

Плутоний ядовит и требует аккуратного обращения. Наиболее расщепляемый изотоп плутония использовался в качестве в ядерном оружии. В частности, его применяли в бомбе, которая была сброшена на японский город Нагасаки.

Это радиоактивный яд, накапливающийся в костном мозге. При проведении экспериментов над людьми в целях изучения плутония произошло несколько несчастных случаев, некоторые с летальным исходом. Важно, чтобы плутоний не достиг критической массы. В растворе плутоний быстрее образует критическую массу, чем в твердом состоянии.

Атомное число 94 означает, что все атомы плутония имеют 94 . На воздухе на поверхности металла образуется оксид плутония. Этот оксид пирофорный, поэтому тлеющий плутоний будет мерцать, как зола.

Существует шесть аллотропных форм плутония. Седьмая форма появляется при высоких температурах.

В водном растворе плутоний меняет цвет. На поверхности металла появляются различные оттенки по мере его окисления. Процесс окисления нестабилен, и цвет плутония может внезапно меняться.

В отличие от большинства веществ, плутоний уплотняется, когда плавится. В расплавленном состоянии этот элемент более вязкий, чем другие металлы.

Металл применяется в радиоактивных изотопах в термоэлектрических генераторах, на которых работают космические корабли. В медицине его применяют при производстве электронных стимуляторов для сердца.

Вдыхание паров плутония опасно для здоровья. В некоторых случаях это может спровоцировать рак легких. У вдыхаемого плутония металлический привкус.

Давайте коротко припомним историю подписания СОУП-2000 с двух разных сторон: 1) конкретно о плутонии и 2) в связке с договорами СНВ-I и СНВ-III - договор о Сокращении Наступательных Вооружений.

СНВ-2 подробно анализировать не имеет смысла, но коротко коснемся. В 1993 году президент РФ Ельцин Б.Н. и президент США Джордж Буш подписали договор СНВ-II. Если коротко, то по нему стороны обязались отказаться от использования баллистических ракет с разделяющимися головными частями индивидуального наведения. Мотив понятен - уж очень опасно, слишком велик риск эскалации международного напряжения и глобального конфликта. Но 1993 год был слишком бурным в России, чтобы дело дошло до ратификации этого договора, судьба которого оказалась весьма короткой. ВС РФ, а затем Госдума проводили дебаты, вносили изменения вплоть до 2002 года, в котором США в одностороннем порядке вышли из договора об ограничении ПРО. В ответ правительство России просто отказалось от ратификации СНВ-2.

Джордж Буш (США) и Михаил Горбачев (СССР), Фото: gazeta.eot.su

Но подписание СНВ-II и отказ от его ратификации не отменили действие СНВ-I, подписанного еще СССР и США в далеком 1991 году 31 июля Горбачевым и Джорджем Бушем-старшим. По этому договору СССР должен был ограничить себя 6’000 ядерных боеголовок, а США - 8’500. Выполнение договора было затруднено «небольшой проблемой» - распался СССР. Однако 23 мая 1992 был подписан Лиссабонский договор, сторонами которого были США, Россия, Белоруссия, Украина и Казахстан, в соответствии с которым к СНВ-1 присоединились последние три государства. Белоруссия, Украина и Казахстан - государства, на территории которых в 1992 году оставались бывшие общие ядерные арсеналы СССР. По Лиссабонскому договору Белоруссия, Украина и Казахстан взяли на себя обязательства или уничтожить ядерное оружие, оказавшееся на их территории, либо передать его России. 6 декабря 2001 года Россия и США заявили, что полностью выполнили свои обязательства по СНВ-1.

Что означали сокращения ядерных боеголовок для нашего и американского атомных проектов? Часть наработанных в годы «холодной войны» запасов оружейного урана и оружейного плутония оказались просто «лишними» для оборонных программ обоих государств. Это стало основой для соглашения, а затем контракта ВОУ-НОУ 1993-1994 годов и началом к подготовке СОУП. С плутонием вопрос технически значительно сложнее, чем с ураном: в 1992 еще никто не понимал, каким способом можно избавиться от опасного радиоактивного вещества с периодом полураспада 24’000 лет. Первый шаг был очевиден: Россия и США обязались закрыть и ликвидировать все атомные реакторы по наработке оружейного плутония.

«Не совсем пока понимаем, как уничтожать, но уж новые запасы делать точно не будем».

В те же годы свой первый опыт по производству МОКС-топлива начала нарабатывать Франция, но в используемой в этой стране технологии использовался плутоний только и исключительно из ОЯТ (отработанного ядерного топлива). Как использовать для той же цели плутоний оружейный, было совершенно непонятно, но уже тогда ведущие специалисты понимали, что именно переработка оружейного плутония в МОКС-топливо и последующее его «сжигание» в реакторах АЭС и есть самый надежный способ его утилизации. В октябре 1996 года эксперты нескольких стран провели встречу в Париже, по итогам которой переработка оружейного плутония в МОКС-топливо была признана предпочтительной схемой утилизации, а так называемая «иммобилизация» была признана дополнительным вариантом.

Иммобилизация, если кратко - технологический прием, при котором плутоний включают в состав химически устойчивого соединения с какими-то другими химическими элементами, полученную «смесь» в комплекте с замедлителями нейтронов (чтобы застраховаться от цепной реакции деления) помещают в капсулу из особого сорта стекла, капсулу помещают в стальной контейнер, стальной контейнер «хоронят» в глубоких геологических формациях. Сказка о кощеевой игле на новый лад, вызывающая здоровый скепсис. Химическое соединение как создается, так и разрушается, для этого меч-кладенец не требуется. Вечное хранение в глубоких геологических структурах - теоретически замечательное мероприятие, ни разу пока не реализованное на практике, а речь не просто о некоем радиактивном веществе, а о важнейшем компоненте атомного и термоядерного оружия.

С 1998 года действовало российско-американское межправительственное соглашение о научно-техническом сотрудничестве в области обращения с плутонием, выводимом из военных программ, эксперты приступили к выработке всех пунктов Соглашения-2000. Первоначально планировалось начать утилизацию не позднее 2007 года: по 34 тонны для каждой стороны со скоростью не менее 2 тонн в год. Но технология не желала сдаваться быстро и просто - поэтому последовали дополнительные протоколы 2006 и 2010 годов, по последнему из которых фактическое уничтожение оружейного плутония должно было начаться в 2018 году. При этом единственно возможной технологией был выбран основной вариант: МОКС-топливо - реактор АЭС. Любое изменение возможно только при письменном согласии обеих сторон - очевидно, что таким образом Россия уже тогда страховалась от попыток США использовать иммобилизацию.

Энергоблок № 4 Белоярской АЭС с реактором на быстрых нейтронах БН-800, Фото: sdelanounas.ru

Страховка была совершенно логична для России и Росатома прежде всего именно по техническим причинам. Ни наши обычные АЭС, ни реактор на быстрых нейтронах БН-600 МОКС-топливо еще не использовали, переход на него - не самое дешевое удовольствие, требующий серьезных инвестиций. Но, тем не менее, Россия последовательно и аккуратно выполняла взятые на себя обязательства: строила реактор БН-800, разрабатывала технологию переработки в МОКС-топливо оружейного плутония, аккуратно завершив эту разработку строительством уникального завода в Железногорске. Это единственный мире завод, способный превратить в МОКС-топливо плутоний и из ОЯТ, и плутоний оружейный. И снова очевидно, что и тут Росатом перестраховывался: не будем перерабатывать оружейный по соглашению с США - пустим в ход наше ОЯТ, продвигая практическую реализацию технологии замкнутого ядерного топливного цикла. Не сделаем этого - потенциально можем получить «мертвый» завод, зарытые в бетон государственные инвестиции.

США с технологией «оружейный плутоний - МОКС-топливо - реактор АЭС» не справились от слова «совсем». Нет ни технологии, ни, тем более, завода по производству МОКС-топлива. Нет ни одного промышленного реактора на быстрых нейтронах. Не получено ни одной лицензии МАГАТЭ на использование МОКС-топлива в обычных реакторах. При этом, согласно протокола к СОУП от 2010 года, напоминаю, практическое уничтожение плутония должно было начаться в 2018 году - то есть у американцев оставалось в запасе не более полутора лет. И даже в том случае, если бы Россия закрыла на все это глаза и согласилась на пресловутую иммобилизацию, американцы не способны за такой срок реализовать и ее: ну, нет у них ни одного хранилища в глубокой геологической формации! Проект Юкка-Маунтин заморожен, оставлен без финансирования, никакой определенной позиции по этому проекту нет ни у мадам Клинтон, ни у господина Трампа. Прием РАО в хранилище WIPP как был приостановлен после пожара в 2014 году, так и не возобновляется до сих пор «по техническим причинам». Куда «иммобилизировать», извините?

Владимир Путин (Россия), Фото: http://politikus.ru/

С учетом всего сказанного, создается впечатление, что сегодняшний закон нет ни малейшего смысла называть неким «ультиматумом» с нашей стороны. На наш взгляд, Владимир Владимирович, в общем-то, спас имидж США от неизбежного позора: если бы не его инициатива о приостановке действия СОУП, новый президент Америки просто вынужден был бы признаться в том, что его государство не способно выполнять взятые на себя обязательства по причине своей технологической несостоятельности. Но и прощать этих безнадежных ребят Россия не намерена - условия , на которых Россия готова возобновить действие СОУП, требуют полного изменения всей внешней политики США. «Ничего личного, только бизнес» - если господа американцы вдруг забыли ими же придуманную присказку, им ее припомнили. Жестко? Безусловно.

Но ни Путин лично, ни Росатом в частности, ни Россия вообще не виноваты в том, что у нынешнего поколения американских атомщиков руки растут из … м-м-м… не из плеч, в общем. То, что Буш-младший отказался от внесения на рассмотрение Конгресса США договора о сотрудничестве с Россией в атомной отрасли из-за «агрессии России в Южной Осетии и в Абхазии» - тоже не наша головная боль. Был у американцев шанс перенять успешный опыт в самых разных направлениях атомного проекта - они от него отказались. Самостоятельно они смогли только угрохать 7,7 млрд долларов на освоение технологии переработки оружейного плутония в МОКС-топливо, выдав на-горА нулевой результат.

Какой может быть судьба оружейного плутония, не нужного для оборонных программ, сегодня можно только гадать. Россия в одностороннем порядке уничтожать его не намерена, разработанная технология, реализованная для завода в Железногорске, позволяет заниматься решением проблем ОЯТ и замкнутого топливного цикла - тут мы ничего не потеряли. Но приостановка действия СОУП-2000 дает серьезнейшие аргументы самым тревожным настроениям, подпитывая призрак новой «холодной войны». Речь - о СНВ-III, подписанном Россией и США 10 марта 2010 года и ратифицированном в 2011.

Барак Обама (США) и Дмитрий Медведев (Россия), Фото: Defence.ru

Этот договор содержит новые ограничения на количества ядерных боезарядов, но стоит помнить, что при его ратификации Государственной Думой было принято еще и заявление депутатов, в котором указана необходимость отслеживания строительства системы американской ПРО в Европе, а также необходимость вывода с континента тактического ядерного оружия США. Заявления эти были ответом на резолюцию, принятую Сенатом США при ратификации СНВ-III:

«Новый договор не накладывает органичений на создание системы ПРО».

Очевидно, что обе стороны обеспечили себе возможность выхода из СНВ-III, («хотите ограничить нашу ПРО? Мы выходим из СНВ!» против «хотите продолжать разворачивать ПРО? Мы выходим из СНВ!»), а остающиеся не уничтоженными 34 тонны плутония делают такой выход достаточно «зловещим». Напоминаем, что военные специалисты для некой «условной» боеголовки в наше время считают необходимым всего 25 кг оружейного плутония. Калькулятор подскажет, каким количеством нового ядерного оружия может обернуться отказ от СНВ-III: теоретически это позволяет создать 1’360 новых боеголовок и России, и Соединенным Штатам.

Межконтинентальная баллистическая ракета “Тополь-М”, Фото: 3mv.ru

Но учтем, однако, еще одну техническую деталь. В состав атомной бомбы, помимо оружейного плутония, входит еще и оружейный уран. Оружейный уран - компонент и термоядерной бомбы. Если кто-то забыл, оружейным считается уран, содержание изотопа уран-235 в котором составляет 90%. По обоюдной договоренности, наработка оружейного урана прекращена по обе стороны океана, но мы ведь гипотезу строим, исходя из того, что новый виток эскалации напряженности будет совсем уж тугим, не так ли? В США количество предприятий, потенциально способных нарабатывать оружейный уран, равно нулю (за что, разумеется, отдельное «спасибо» мужу нового кандидата на пост президента США, столь удачно приватизировавшему Американскую Обогатительную Компанию). В России же количество таких предприятий равно четырем. Вот с учетом этого обстоятельства давайте, наконец, и переведем текст нового закона на понятный язык. Да, это всего лишь наш «самопальный» вариант перевода, но критикам придется начинать с поиска дырок в логике. А мы, как и обычно, будем рады услышать конструктивную критику. На наш взгляд, «перевод» выглядит приблизительно так.

«Господа американские партнеры! Вы не способны утилизировать плутоний, поскольку вы просто не обучаемы, поскольку вы загнали свою атомную отрасль в клоаку. Давайте забудем об этом самом СОУП, пусть «лишний» оружейный плутоний останется для вас и для нас стратегическим резервом. Но при этом ни вы, ни мы не забудем, что оружейный уран вы наработать просто не сможете: сами вы с центрифугами не справились, а прикупить технологию на стороне вам не позволит Договор о нераспространении ядерного оружия. И, даже если вы положите с прибором и на него, вы по времени проигрываете лет 5-10: пока вы построите заводы, пока освоите новую для вас технологию, мы новые боеголовки успеем создать и поставить на боевое дежурство. Давайте смотреть правде в глаза: вы, господа партнеры, ядерную гонку вооружений против нас не способны выиграть ни при каких раскладах. Потому последний раз предлагаем: давайте жить мирно, занимаясь каждый своими делами. Что такое «заниматься своими делами», понять не можете? Нет проблем, перечисляем» - и далее по тексту идут условия возвращения России к действию СОУП-2000.

Стоит, пожалуй, еще раз заострить внимание на том, что безнадежное отставание США в атомном проекте - не результат каких-то козней, интриг со стороны России. Не бегал Путин с Кириенко с черными пистолетами, подметных писем не писали, все - «Сама-сама-сама». Американцы не отстали - они просто встали на тормоз, самоуспокоились после победы в «холодной войне», после краха СССР. А Россия, ее Росатом - шагали себе и шагали.

Композиция изотопов плутония, накапливающегося в реакторе в результате реакций, происходящих в урановом топливе, зависит от степени выгорания топлива. Из 5 основных образовавшихся изотопов 2 с нечетными массовыми номерами – 239 Pu и 241 Pu являются ращепляющимися, т.е. способными к ращеплению под действием тепловых нейтронов, и в ринципе могут быть использованы в качестве реакторного топлива. Поэтому, если речь идет о возможности использования плутония в качестве реакторного топлива, значение имеет количестио накоплен-ного 239Pu и 241Pu. Для ядерного же оружия необходим практически чистый 239Pu т.к. излучатели нейтронов 240Pu и 238Pu могут спонтанно вызвать “пред-начальное воспламенение”, а это приведет к существенно меньшей силе взрыва атомной бомбы. Поэтому разница в “качестве” плутония обычно определяется его изотопным составом.

239 Pu накапливаеться в обычном энергетическом реакторе на урановом топливе в результате нейтронного захвата изотопом 238 U.Одновременно с этим происходит основная реакция деления изотопа 235 U сопровождающаяся выдел поэтому для того, чтобы его можно было использовать в качестве топлива в легководных реакторвах, естественный уран обогащают, доводя содержание 235 U до 3-4%. После одного года работы типичного ЛВР мощностью 1000 МВт образуется около 200 кг плутония из которых около 150 кг составляет 239 Pu.

Таблица 2 - Виды плутония.

Таким образом, при работе атомного уранового реактора в его топливных стержнях накапливаются различные изотопы плутония.

Плутоний, производимый в топливных элементах обычных промышленных атомных реакторов, подвергшихся экспозиции 33000 МВт*сут/т уранового топлива, имеет приблизительно следующий изотопный состав:

Таблица 3 - Изотопный состав реакторного плутония (степень выгорания 30-40 МВт*сут/кг).

Лишь два из пяти изотопов плутония, 239 Pu и 241 Pu, являются расщепляющимися (делящимися), т.е. способными к расщеплению в результате захвата тепловых (медленных) нейтронов, и в принципе пригодны для использования в качестве реакторного топлива. Поэтому, если речь идет о возможности использования плутония в качестве реакторного топлива, важно знать только количество 239 Pu и 241 Pu, обозначаемое Puf от слов Pu (плутоний) и fissile (делящийся). Полное же количество всех изотопов плутония обозначается Put от слова total (полный, общий, итоговый).

Для ядерного же оружия желательно иметь практически чистый 239 Pu, поскольку изотопы 240 Pu и 238 Pu самопроизвольно испускают нейтроны, которые могут вызвать т. н. «предначальное воспламенение», а это приведет к существенно меньшей силе взрыва атомной бомбы. Поэтому принято классифицировать плутоний по "качеству" в соответствии с его изотопным составом.

Хотя предначальное воспламенение уменьшает мощность взрыва ядерного взрывного устройства, изготовленного из реакторного плутония, можно утверждать, что мощность взрыва сравнительно простого взрывного устройства из реакторного плутония, подобного бомбе, взорванной в Нагасаки, будет равно примерно одной или нескольким килотоннам, даже если предначальное воспламенение произойдет в наименее благоприятный момент. В Японии и некоторых европейских странах сторонники плутония продолжают утверждать, что из-за предначального воспламенения реакторный плутоний практически не может быть использован в ядерном оружии, и что поэтому плутониевые программы в этих странах, основанные на выделении и использовании реакторного плутония, следует рассматривать исключительно как «мирные». Однако это мнение противоречит фактам, признанным международной научной общественностью. В докладе американской Национальной Академии наук, выпущенном в 1994 году и посвященном утилизации ядерных оружейных материалов, утверждается, что «плутоний практически любого изотопного состава может быть использован в ядерном оружии».

В некоторых европейских странах апологеты плутония продолжают утверждать, что реакторный плутоний практически не может быть использован в ядер-ном оружии и на этом основании плутониевые программы в таких странах, основанные на выделении и использовании реакторного плутония, предлагается рассматривать, исключетельно, как “мирные”. Утверждение о “мирном” характере реакторного плутония, однако, противоречит фактам, признанным международной научной общественностью. В докладе американской Национальной Академии Наук, выпущенном в 1991 году и посвященном диспозиции ядерных оружейных материалов, утверждается, что “плутоний с практически любым изотопным составом может быть использован в ядерном оружии”. Можно привести и другие научные и технические аргументы в пользу того, что реакторный плутоний является подходящим материалом для ядерного оружия.

МОКС-топливо

Поскольку и реакторный плутоний, и плутоний более высоких сортов является смесью делящихся изотопов, он в принципе пригоден для использования в качестве реакторного топлива. Обычно плутоний используется в этом качестве в виде смеси диоксида плутония PuO 2 с диоксидом урана UO 2 . Эта смесь оксидов (PuO 2 +UO 2), называемая МОКС-топливом, обычно используется в двух типах реакторов - в реакторах на быстрых нейтронах (БН) и в легководных реакторах (ЛВР).

Реактор на БН может вырабатывать плутоний в результате захвата нейтронов ядрами 238 U, находящегося в активной зоне реактора и в окружающем ее бланкете, в то время как плутоний (МОКС-топливо с 20-30% плутония) "горит" в активной зоне. Такой реактор называют размножителем или бридером, поскольку он вырабатывает больше плутония, чем потребляет. Смысл бридера в том, что он повышает эффективность использования ресурсов урана в целых 60 раз, и он позволяет преобразовать ранее остававшийся без применения 238 U в плутоний и одновременно вырабатывать полезную мощность. Из-за этих заманчивых перспектив реактор на БН стал с самого начала развития атомной промышленности ее "голубой мечтой", почти «вечным двигателем».

Но, увы - реальность оказалась больше похожа на кошмар, чем на прекрасный сон. Чтобы размножение было возможным, реакция деления в реакторе на БН поддерживается быстрыми (высокоэнергетическими) нейтронами, в отличие от ЛВР, которые работают на тепловых нейтронах. Поскольку нет возможности использовать замедляющий охладитель, приходится охлаждать активную зону реактора на БН расплавом щелочного металла, который имеет высокую химическую активность и реагирует со взрывом с воздухом и водой.

Отметим далее, что размножение плутония происходит не так быстро, как хотелось бы: время удвоения, то есть время, за которое один бридер создает достаточно плутония для загрузки другого такого же реактора (40 лет), значительно превышает время жизни первого реактора (не более 30 лет). Это указывает на другую ключевую проблему бридера: в конечном итоге для его эксплуатации должна быть создана система, включающая множество этапов, в том числе выделение плутония, загрузка топлива в реакторы, переработка отработавшего топлива и бланкета.

Эти и другие технические трудности бридеров стали причиной неэкономичности их использования, и оба эти недостатка - технические сложности и высокие стоимостные показатели - привели к тому, что США и все западноевропейские страны свернули свои бридерные программы.

Применение МОКС в качестве ядерного топлива: проблемы безопасности

С окончанием периода «холодной войны» угроза начала мировой войны с применением ядерного оружия уменьшилась почти до нуля. Ее место заняла опасность распространения ядерного оружия и применения его ранее не обладавшими им государствами или группами, что может произойти в случае, если в их руки попадет высокообогащенный уран или плутоний.

В настоящее время основная угроза безопасности в связи с ядерным оружием возникает из-за распространения его на страны, ранее им не обладавшие. Пока лишь семь государств обладают ядерным оружием. Это Китай, Франция, Россия, США, Великобритания, Индия и Пакистан.

На данный момент США располагают 9500 ядерных боеголовок, Россия - примерно 10500. Если разрабатываемые в настоящее время соглашения о сокращении вооружений вступят в силу, Россия и США уменьшат свои ядерные арсеналы до примерно 5000 с каждой стороны к 2003 году. Но даже после столь значительного сокращения эти две страны будут обладать весьма внушительными запасами ядерного оружия.

Великобритания располагает 400 ядерных боеголовок; Франция примерно 500; Китай, вероятно, около 400; Индия около 40; Пакистан примерно 7. Можно также предполагать, что Иран, Израиль и Северная Корея стремятся к созданию ядерного оружия.

Тем не менее, маловероятно, что какой-либо стране удастся войти в клуб ядерный держав в течение ближайших 10-15 лет. В течение этого периода произойдет широкое распространение атомных технологий, ориентированных на мирное применение (но которые можно использовать для развития военных программ). Одновременно будет происходить распространение технологии создания баллистических ракет. Опасное сочетание! Когда это произойдет (а можно опасаться, что это случится примерно через 10-15 лет), распространение ядерного оружия может пойти быстрыми темпами.

Сейчас значительное внимание уделяется деятельности ядерных держав по модернизации их ядерных вооружений («вертикальная гонка вооружений»). Однако не следует недооценивать опасности, которые таит в себе попадание ядерного оружия в распоряжение государств, ранее его не имевших («горизонтальная гонка вооружений»), поскольку это создает угрозу применения ядерного оружия в будущих локальных конфликтах.

Обретение какой-либо державой статуса ядерной будет дестабилизировать обстановку в соответствующем регионе. Более того, одна лишь возможность такого обретения наносит ущерб безопасности, заставляя страны-соседи напрягать силы, чтобы не отстать от лидера. Например, если Япония начнет работать над созданием ядерного оружия, Северная и Южная Кореи будут склонны сделать то же, а Китай, вероятно, займется наращиванием ядерных арсеналов.

Кажется маловероятным, что правительства будут принимать политические решения о создании ядерного оружия в ближайшее время, зато риск попадания ядерного оружия в руки террористов все возрастает. Эта опасность уже стала более актуальной, чем угроза мировой ядерной войны, по крайней мере, в ближайшей и среднесрочной перспективе.

Террористы неизменно стремятся к нанесению возможно большего ущерба. От ставших привычными попыток взрыва самолетов они переходят к более серьезным действиям, таким как атака с использованием нервно-паралитического газа в Токио. Этот пример показывает, что лидеры террористических группировок не останавливаются перед применением современного оружия массового уничтожения - в данном случае химического. Ядерное оружие может стать следующим в этой цепи.

Использование МОКС в качестве топлива для ядерных реакторов с последующим выделением плутония из отработанных топливных элементов резко увеличивает опасность попадания делящихся материалов, пригодных для изготовления ядерного оружия, в руки агрессивно настроенных государств и террористов. В простейшей атомной бомбе вся энергия взрыва возникает за счет реакции деления ядер.

Ниже описано устройство плутониевой атомной бомбы имплозионного типа. Те, кому удастся ее изготовить, могут быть уверены в том, что она сработает - им не потребуется проводить испытаний, так что изготовление и последующее размещение взрывного устройства можно будет осуществить в тайне.

Поделитесь с друзьями или сохраните для себя:

Загрузка...