Меры борьбы с вибрацией. Методы борьбы с вибрацией

Для защиты от вибрации применяют следующие методы:

  • 1. снижение виброактивности машин;
  • 2. отстройка от резонансных частот;
  • 3. вибродемпфирование; виброизоляция;
  • 4. виброгашение,
  • 5. индивидуальные средства защиты

Основные методы защиты от вибрации делятся на две группы:

  • 1. снижение вибрации в источнике ее возникновения;
  • 2. уменьшение параметров вибрации по пути ее распространения от источника.

Снижение вибрации в источнике ее возникновения. Для того чтобы снизить вибрацию в источнике ее возникновения, необходимо уменьшить действующие в системе переменные силы, что достигается заменой динамических технологических процессов статическими (например, ковку и штамповку рекомендуется заменять прессованием, операцию ударной правки-вальцовкой, пневматическую клепку - сваркой и т.д.) рекомендуется также тщательно выбирать режимы работы оборудования, чтобы вибрация была минимальной. Большой эффект дает тщательная балансировка вращающихся механизмов, применение специальных редукторов с низким уровнем вибрации и другие мероприятия. Важно чтобы соответствующие частоты вибрации агрегата или установки не совпадали с частотами переменных сил, вызывающих вибрацию. В противном случае может возникнуть резонанс, который увеличит амплитуду колебаний (виброперемещение) устройства, что может привести к его поломке или разрушению. Исключить резонансные режимы работы оборудования и тем самым снизить уровень вибрации можно либо путем изменения массы и жестокости вибрирующей системы, либо установлением нового режима работы агрегата.

Уменьшение параметров вибрации по пути ее распространения от источника. Защита от вибрации вибродемпфированием (вибропоглощение) представляет собой превращение энергии механических колебаний системы в тепловую, это достигается использованием в конструкциях вибрирующих агрегатов специальных материалов (например, сплавов систем медь-никель, никель-титан, титан-кобальт), применением двухслойных материалов типа сталь-алюминий, сталь-медь. Хорошей вибродемпфирующей способностью обладают и традиционные материалы: пластмассы, дерево, резина. Значительный эффект достигается при нанесении на колеблющиеся детали вибропоглощающих покрытий - различных упруговязких материалов, таких, как пластмасса или резина, а также различных мастик.

Виброгашение или динамическое гашение, колебаний достигается в первую очередь установкой вибрирующих машин и механизмов на прочные массивные фундаменты. Массу фундамента рассчитывают таким образом, чтобы амплитуда колебаний его подошвы была в пределах 0,1-0,2 мм, а для особо важных сооружений - 0,005 мм. Достаточно эффективный способ защиты - виброизоляция, которая заключается в уменьшении передачи колебания от вибрирующего устройства к защищаемому объекту помещением между ними упругих устройств. Эти устройства называются виброизоляторами. В качестве виброизоляторов используют пружинные опоры либо упругие прокладки из резины, пробки и т.д. возможно использования сочетания этих устройств (комбинированные виброизоляторы). Для уменьшения вибрации ручного инструмента его ручки выполняются с использованием упругих элементов - виброизоляторов, снижающих уровень вибрации. Рассмотренные выше методы защиты от вибрации относятся к коллективным методам защиты. К средствам индивидуальной защиты относятся специальные рукавицы, перчатки и прокладки. Для защиты ног используют виброзащитную обувь, снабженную прокладками из упругодемпфирующих материалов (пластмассы, резины или войлока) с целью профилактики вибрационной болезни персонала, работающего с вибрирующим оборудованием.

Зависимость между амплитудой колебательной скорости V K и возмущающей силой F выражается формулой

где F – возмущающая сила, Н;

μ – коэффициент вязкого трения, Н · с/м;

f – частота колебаний, Гц;

m – масса системы, кг;

с – коэффициент жесткости системы, Н/м.

Знаменатель этого выражения представляет полное механическое сопротивление, которое оказывает система возмущающей переменной силе F.

Величина μ в выражении (7.8) составляет активную часть сопротивления, измеряемую в Н · с/м, а величина – реактивную. Реактивная составляющая сопротивления состоит из инерционного га и упругогосопротивлений.

На основе анализа формулы (7.8) можно утверждать, что для уменьшения V K необходимо:

явление резонанса.

Различают шесть способов борьбы с вибрацией: снижение вибрации в источнике, отстройка от режима резонанса, виброгашение, виброизоляция, вибродемпфирование, применение средств индивидуальной защиты.

Снижение вибрации в источнике (уменьшение возмущающей силы F) – основной способ борьбы с вибрацией. Он производится путем проведения статической и динамической балансировки вращающихся частей машины, замены подшипников качения на подшипники скольжения; применения конструкционных материалов с повышенным внутренним трением. Применение специальных видов зацепления и чистоты поверхности шестерен позволяет снизить уровень вибрации на 3-4 дБ.

Отстройка от режимов резонанса достигается либо изменением характеристик системы (массы и жесткости) и соответственно собственной частоты колебаний машины, либо изменением угловой скорости и соответственно частоты возмущающей силы. Жесткостные характеристики системы изменяются введением в конструкцию ребер жесткости или изменением ее упругих характеристик.

Собственная частота f 0 вибрирующей системы определяется по формуле

(7.9)

Виброизоляция. Между источником вибрации и ее приемником, являющимся одновременно объектом защиты, устанавливают упругодемпфирующее устройство – виброизолятор (рис. 7.2).

Рис. 7.2. Виброизолирующие опоры: а – пружинные; б – резиновые виброизоляторы

Цель защиты при виброизоляции заключается в уменьшении передаваемого смещения. Степень реализации этой цели характеризуют динамическим коэффициентом передачи К п, который можно определить из выражения

где F OCH – сила, действующая на основание, Н;

F маш – возмущающая сила, создаваемая машиной, Н.

Чем меньше К п, тем выше виброизоляция. Хорошая виброизоляция достигается при К п = 1/8 ... 1/15.

Эффективность виброизоляции можно оценивать в децибелах, пользуясь формулой

В качестве виброизоляторов используют упругие материалы: пружины, резину, пробку, войлок Выбор того или иного материала обычно определяется величиной требуемого статического прогиба и условиями, в которых будет работать виброизолятор.

Виброгашение (увеличение т) реализуется при увеличении эффективной жесткости и массы корпуса машины за счет их объединения в единую замкнутую систему с фундаментом с помощью анкерных болтов или цементной подливки (рис. 7.3).

Другим способом подавления вибраций является установка динамических виброгасителей, представляющих собой дополнительную колебательную систему с массой и жесткостью C 1 , собственная частота колебаний которой определяется по формуле

Динамический виброгаситель крепится на вибрирующий агрегат, поэтому в нем в каждый момент времени возбуждаются колебания, находящиеся в противофазе к колебаниям агрегата.

Недостаток динамического виброгасителя заключается в том, что он подавляет колебания только определенной частоты, соответствующей его собственной.

Рис. 7.3. Установка агрегатов на виброгасящем основании: а – на фундаменте и грунте; б – на перекрытии

Вибродемпфирование (увеличение μ) – это снижение вибрации объекта путем превращения ее энергии в другие виды (в конечном счете в тепловую).

Вибродемпфирование может быть реализовано в машинах с интенсивными динамическими нагрузками применением материалов с большим внутренним трением: чугун с малым содержанием углерода и кремния, сплавы цветных металлов.

Используются вибродемпфирующие покрытия для снижения колебаний, распространяющихся по трубопроводам, воздуховодам. К таким материалам относят: покрытия мастичные (пластик, мастика, пластикат, антивибрит и др.); покрытия листовые (пенопласт, волосяной войлок, поролон, минераловатная плита, губчатая резина, винипор, фольгоизол, стеклоизол, гидроизол и др.). Толщина покрытий берется равной 2-3 толщинам демпфируемого элемента конструкции. Хорошо демпфируют колебания смазочные масла.

Вибродемпфирование реализуется применением поверхностного трения (например, рессоры, пачка листов железа), установкой специальных демпферов (амортизаторов).

Использование средств индивидуальной защиты. Средства индивидуальной защиты от вибрации рук и ног отличаются от обычных образцов спецодежды и спецобуви наличием в них специальных упругодемпфирующих элементов, поглощающих вибрацию.

Защиту рук от контактной вибрации обеспечивают с помощью виброзащитных рукавиц и перчаток. Их либо полностью изготавливают из упругодемпфирующего материала, либо прикрепляют к ладонной стороне рукавицы демпфирующий элемент, который изготавливается из поролона, пенопласта, губчатой резины, эластично-трубчатых элементов и др. Толщина прокладки должна быть минимальной, чтобы обеспечивать демпфирование и свободу движения руки, и составляет от 5 до 10 мм.

Виброзащитная обувь изготавливается с упругой подошвой, со съемными упругими каблуками и подметкой, с упругой стелькой.

Мероприятия по борьбе с шумом и вибрацией во многом однотипны.

Прежде всего, необходимо обратить внимание на технологический процесс и оборудование, по возможности заменить операции, сопровождающиеся шумом или вибрацией, другими. В ряде случаев можно заменить ковку металла его штамповкой, клепку и чеканку - прессованием или электросваркой, наждачную зачистку металла - огневой, распиловку циркулярными пилами - резанием специальными ножницами и т.д. Необходимо следить, чтобы при такой замене не создавались какие-либо дополнительные вредности, которые могут оказывать на работающих более неблагоприятное действие, чем шум и вибрация.

Устранение или сокращение шума и вибрации от вращающихся или двигающихся узлов и агрегатов достигается, прежде всего, путем точной подгонки всех деталей и отладки их работы (уменьшение до минимума допусков между соединяющимися деталями, устранение перекосов, балансировка, своевременная смазка и т.п.). Под вращающиеся или вибрирующие машины или отдельные узлы (между соударяющимися деталями) следует прокладывать пружины или амортизирующий материал (резина, войлок, пробка, мягкие пластики и т.п.). В тех случаях, где допустимо по техническим условиям, целесообразно заменить подшипники качения на подшипники скольжения, плоскоременные передачи со вшивным ремнем - на клиновидные, редукторные передачи на безредукторные, детали и узлы с возвратно-поступательными движениями - на вращательные.

Не рекомендуется вращающиеся части машины (колеса, шестерни, валы и т.п.) размещать с одной ее стороны: это усложняет балансировку и приводит к вибрации. Вибрирующие большие поверхности, создающие шум (дребезжащие), такие, как кожухи, перекрытия, крышки, стенки котлов и цистерн при их.клепке или зачистке, галтовочные барабаны и т.п., следует более плотно соединять с неподвижными частями (основаниями), укладывать на амортизирующие подкладки или обтягивать подобным материалом сверху.

Для предупреждения завихрений воздушных или газовых потоков, создающих высокочастотные шумы, необходимо тщательно монтировать газовые и воздушные коммуникации и аппараты, особенно находящиеся под большим давлением, избегая шероховатостей внутренних поверхностей, выступающих частей, резких поворотов, неплотностей и т.п. Для выпуска сжатого воздуха или газа следует использовать не простые краны, а специальные задвижки типа Лудло. Давление воздуха или газа в системах нельзя повышать выше величин, необходимых для данного технологического процесса, для чего желательно устанавливать ограничители давления. Окружная скорость турбин вентиляторов и других вращающихся частей оборудования, увлекающих за собой воздушные потоки, не должна превышать 35-40 м/с. Соединения вентиляторов с воздуховодами, а в ряде случаев газовых и воздушных коммуникаций целесообразно производить мягкими переходами (резиновые, брезентовые рукава, резиновые прокладки на фланцах и т.п.). На выхлопах пневматических установок оборудуются шумоглушители.

Немаловажную роль в борьбе с шумом и вибрацией играют архитектурно-строительные и планировочные решения при проектировании и строительстве промышленных зданий. Прежде всего, необходимо наиболее шумящее и вибрирующее оборудование вынести за пределы производственных помещений, где находятся рабочие; если это оборудование требует постоянного или частого периодического наблюдения, на участке его размещения оборудуются звукоизолированные будки или комнаты для обслуживающего персонала.

Помещения с шумящим и вибрирующим оборудованием надо как можно лучше изолировать от остальных рабочих участков. Аналогичным образом целесообразно изолировать между собой и помещения или участки с шумами разной интенсивности и спектра. Стены и потолки в шумных помещениях покрываются звукопоглощающими материалами, акустической штукатуркой, мягкими драпировками, перфорированными панелями с подкладкой из шлаковаты и др.

Мощные машины и другое оборудование вращательного или ударного действия устанавливаются в нижнем этаже на специальном фундаменте, полностью отделенном от основного фундамента здания, а также пола и опорных конструкций. Подобное оборудование меньшей мощности устанавливается на несущих конструкциях здания с прокладками из амортизирующих материалов или на консолях, крепящихся на капитальных стенах. Оборудование, создающее шум, укрывается кожухами или заключается в изолированные кабины с звукопоглощающими покрытиями. Звукоизолируются также газовые или воздушные коммуникации, по которым может распространяться шум (от компрессоров, пневмоприводов, вентиляторов и т.п.).

В качестве индивидуальных защитных средств при работе в шумных помещениях используются различные противошумы (антифоны). Они изготовляются либо в виде вставляемых в наружный слуховой проход вкладышей из мягких звукопоглощающих материалов, либо в виде наушников, надеваемых на ушную раковину.

При работе в условиях воздействия общей вибрации под ноги рабочему ставится специальная виброгасящая (амортизирующая) площадка. При воздействии местной вибрации (чаще на руки) рукоятки и другие вибрирующие части машин и инструмента (например, пневмомолоток), соприкасающиеся с телом рабочего, покрываются резиной или другим мягким материалом. Виброгасящую роль играют и рукавицы. Мероприятия по борьбе с вибрацией предусматриваются не только при непосредственной работе с вибрирующими инструментами, машинами или другим оборудованием, но и при соприкосновении с деталями и инструментами, на которые распространяется вибрация от основного источника.

Необходимо организовать трудовой процесс таким образом, чтобы операции, сопровождающиеся шумом или вибрацией, чередовались с другими работами без этих факторов. Если организовать такое чередование невозможно, нужно предусматривать периодические кратковременные перерывы в работе с отключением шумящего или вибрирующего оборудования или удалением рабочих в другое помещение. Следует избегать значительных физических нагрузок, особенно статических напряжений, а также охлаждения рук и всего тела; во время перерывов обязательно делать физкультурные упражнения (физкультпаузы).

При приеме на работу, связанную с возможным воздействием шума или вибрации, проводятся обязательные предварительные медицинские осмотры, а в процессе работы - периодические медосмотры раз в год.

Для снижения шума в производственных помещениях применяют различные методы: уменьшение уровня шума в источнике его возникновения; звукопоглощение и звукоизоляция; установка глушителей шума; рациональное размещение оборудования; применение средств индивидуальной защиты.

Наиболее эффективным является борьба с шумом в источнике его возникновения. Шум механизмов возникает вследствие упругих колебаний как всего механизма, так и отдельных его деталей. Причины возникновения шума - механические, аэродинамические и электрические явления, определяемые конструктивными и технологическими особенностями оборудования, а также условиями эксплуатации. В связи с этим различают шумы механического, аэродинамического и электрического происхождения. Для уменьшения механического шума необходимо своевременно проводить ремонт оборудования, заменять ударные процессы на безударные, шире применять принудительное смазывание трущихся поверхностей, применять балансировку вращающихся частей.

Значительное снижение шума достигается при замене подшипников качения на подшипники скольжения (шум снижается на 10...15 дБ), зубчатых и цепных передач клиноременными и зубчатоременными передачами, металлических деталей - деталями из пластмасс.

Снижение аэродинамического шума можно добиться уменьшением скорости газового потока, улучшением аэродинамики конструкции, звукоизоляции и установкой глушителей. Электромагнитные шумы снижают конструктивными изменениями в электрических машинах.

Широкое применение получили методы снижения шума на пути его распространения посредством установки звукоизолирующих и звукопоглощающих преград в виде экранов, перегородок, кожухов, кабин и др. Физическая сущность звукоизолирующих преград состоит в том, что наибольшая часть звуковой энергии отражается от специально выполненных массивных ограждений из плотных твердых материалов (металла, дерева, пластмасс, бетона и др.) и только незначительная часть проникает через ограждение. Уменьшение шума в звукопоглощающих преградах обусловлено переходом колебательной энергии в тепловую благодаря внутреннему трению в звукопоглощающих материалах. Хорошие звукопоглощающие свойства имеют легкие и пористые материалы (минеральный войлок, стекловата, поролон и т.п.).

Средствами индивидуальной защиты от шума являются ушные вкладыши, наушники и шлемофоны. Эффективность индивидуальных средств защиты зависит от используемых материалов, конструкции, силы прижатия, правильности ношения. Ушные вкладыши вставляют в слуховой канал уха. Их изготовляют из легкого каучука, эластичных пластмасс, резины, эбонита и ультратонкого волокна. Они позволяют снизить уровень звукового давления на 10...15 дБ. В условиях повышенного шума рекомендуется применять наушники, которые обеспечивают надежную защиту органов слуха. Так, наушники ВЦНИОТ снижают уровень звукового давления на 7...38 дБ в диапазоне частот 125...8000 Гц. Для предохранения от воздействия шума с общим уровнем 120 дБ и выше рекомендуется применять шлемофоны, которые герметично закрывают всю околоушную область и снижают уровень звукового давления на 30...40 дБ в диапазоне частот 125...8000 Гц.

Для борьбы с вибрацией машин и оборудования и защиты работающих от вибрации используют различные методы. Борьба с вибрацией в источнике возникновения связана с установлением причин появления механических колебаний и их устранением, например замена кривошипных механизмов равномерно вращающимися, тщательный подбор зубчатых передач, балансировка вращающихся масс и т.п. Для снижения вибрации широко используют эффект вибродемпфирования - превращение энергии механических колебаний в другие виды энергии, чаще всего в тепловую. С этой целью в конструкции деталей, через которые передается вибрация, применяют материалы с большим внутренним трением: специальные сплавы, пластмассы, резины, вибродемпфирующие покрытия. Для предотвращения общей вибрации используют установку вибрирующих машин и оборудования на самостоятельные виброгасящие фундаменты. Для ослабления передачи вибрации от источников ее возникновения полу, рабочему месту, сиденью, рукоятке и т.п. широко применяют методы виброизоляции. Для этого на пути распространения вибрации вводят дополнительную упругую связь в виде виброизоляторов из резины, пробки, войлока, асбеста, стальных пружин. В качестве средств индивидуальной защиты работающих используют специальную обувь на массивной резиновой подошве. Для защиты рук служат рукавицы, перчатки, вкладыши и прокладки, которые изготовляют из упругодемпфирующих материалов.

Важным для снижения опасного воздействия вибрации на организм человека является правильная организация режима труда и отдыха, постоянное медицинское наблюдение за состоянием здоровья, лечебно-профилактические мероприятия, такие как гидропроцедуры (теплые ванночки для рук и ног), массаж рук и ног, витаминизация и др. Для защиты рук от воздействия ультразвука при контактной передаче, а также при контактных смазках и т.д. операторы должны работать в рукавицах или перчатках, нарукавниках, не пропускающих влагу или контактную смазку.

Во время ремонта, испытания, отработки режима и налаживания установки, когда возможен кратковременный контакт с жидкостью или ультразвуковым инструментом, в котором возбуждены колебания, для защиты рук необходимо применять две пары перчаток: наружные - резиновые и внутренние - хлопчатобумажные или перчатки резиновые технические по ГОСТ 20010-14. В качестве средств индивидуальной защиты работающих от воздействия шума и воздушного ультразвука следует применять противошумы, отвечающие требованиям ГОСТ 12.4.051-78.

При разработке нового и модернизации существующего оборудования и приборов должны предусматриваться меры по максимальному ограничению ультразвука, передающегося контактным путем, как в источнике его образования (конструктивными и технологическими мерами), так и по пути распространения (средствами виброизоляции и вибропоглощения). При этом рекомендуется применять:

· - дистанционное управление для исключения воздействия на работающих при контактной передаче;

· - блокировку, т.е. автоматическое отключение оборудования, приборов при выполнении вспомогательных операций - загрузка и выгрузка продукции, нанесение контактных смазок и т.д.;

· - приспособления для удержания источника ультразвука или обрабатываемой детали.

Ультразвуковые указатели и датчики, удерживаемые руками оператора, должны иметь форму, обеспечивающую минимальное напряжение мышц, удобное для работы расположение и соответствовать требованиям технической эстетики. Следует исключить возможность контактной передачи ультразвука другим частям тела, кроме ног. Конструкция оборудования должна исключать возможность охлаждения

Рис. 1.

рук работающего. Поверхность оборудования и приборов в местах контакта с руками должна иметь коэффициент теплопроводности не более 0,5 Вт/м град.

Классификация средств коллективной защиты от шума представлена на рис. Акустические в свою очередь подразделяются на средства звукоизоляции, звукопоглощения и глушители.

При наличии в помещении одиночного источника шума, уровень интенсивности L (дБ) можно рассчитать по формуле:

В том случае, когда в расчетную точку попадает шум от нескольких источников, находящихся в помещении, их интенсивности складывают: J = J1 + J2 + ... + Jn. Разделив левую и правую части этого выражения на J0 (пороговую интенсивность звука) и прологарифмировав, получим:

L = 10lgJ/J0 = 10lg(J1 /J0 + nJ2 /J0 + ... + Jn /J0)

L = 10lg(100,1L1 + 100,1L2 + ... + 100,1Ln)

где L1 , L2 ,..., Ln - уровни интенсивности звука, создаваемые каждым источником в расчетной точке при одиночной работе.

Если имеется п источников шума с одинаковым уровнем интенсивности звука Li, то общий уровень интенсивности звука

Установка звукопоглощающих облицовок и объемных звукопоглотителей увеличивает эквивалентную площадь поглощения. Для облицовки помещения используются стекловата, минеральная и капроновая вата, мягкие пористые волокнистые материалы, а также жесткие плиты на минеральной основе, т.е. материалы, имеющие высокие коэффициенты звукопоглощения.

Эффективность снижения уровня шума (ДL, дБ) в помещении

ДL = L - Lдоп,

где L - расчетный уровень интенсивности звука (или звукового давления), дБ; Lдоп -допустимый уровень интенсивности звука (звукового давления), дБ, согласно действующим нормативам.

Эффективность установок облицовок (дБ) можно приближенно определить по формуле:

L = n10lgA2 A1 ,

где А2 и А1 - соответственно эквивалентная площадь поглощения после и до установки облицовки.

Эквивалентная площадь поглощения

A = бср Sпов,

здесь бср- средний коэффициент звукопоглощения внутренних поверхностей помещения площадью Sпов.

Эффективность звукоизоляции однородной перегородки (дБ) рассчитывается по формуле:

ДLз = 20lgGf - 4,75 ,(1)

где G - масса одного м2 перегородки, кг; f - частота, Гц.

Видно, что снижение шума за счет установки перегородки зависит от ее массивности и от частоты звука. Таким образом, одна и та же перегородка будет более эффективной на высоких частотах, чем на низких.

Эффективность установки кожуха ДL, (дБ)

ДL = Lз + 10lgб,

где б - коэффициент звукопоглощения материала, нанесенного на внутреннюю поверхность кожуха, Lз - звукоизоляция стенок кожуха, определяемая по формуле (1).

Методы и средства коллективной защиты от вибрации. Классификация методов и средств защиты от вибрации представлена на рис.2.

Виброизоляцией называется уменьшение степени передачи вибрации от источника к защищаемым объектам.

Виброизоляцию можно оценивать через коэффициент передачи

Kп = 1 / f / f0 - 1 ,


Рис.2.

где f и f0 - частота возмущающей силы и собственная частота системы при наличии виброизолирующего слоя (Гц).

Эффективность виброизоляции определяется по формуле:

BL = 20lg1 / Kп

Чем выше частота возмущающей силы по сравнению с собственной, тем больше виброизоляция. При f < f0 возмущающая сила целиком передается основанию. При f = f0 происходит резонанс и резкое усиление вибрации, а при f > 2f0 обеспечивается виброизоляция, пропорциональная коэффициенту передачи.

Собственная частота системы

f0 = 1/2р?q(m) = 1/2р?g(x)

где q - жесткость виброизолятора; g - ускорение свободного падения; х - статическая осадка виброизолятора под воздействием собственной массы.

Виброизоляция используется при виброзащите от действия напольных и ручных механизмов. Компрессоры, насосы, вентиляторы, станки могут устанавливаться на амортизаторы (резиновые, металлические или комбинированные) или упругие основания в виде элементов массы и вязкоупругого слоя. Для ручного инструмента наиболее эффективна многозвенная система виброизоляции, когда между рукой и инструментом проложены слои с различной массой и упругостью.

Выбор гашения вибрации осуществляется за счет активных потерь или превращения колебательной энергии в другие ее виды, например в тепловую, электрическую, электромагнитную. Виброгашение может быть реализовано в случаях, когда конструкция выполнена из материалов с большими внутренними потерями; на ее поверхность нанесены вибропоглощающие материалы; используется контактное трение двух материалов; элементы конструкции соединены сердечниками электромагнитов с замкнутой обмоткой и др.

Борьба с вибрацией состоит из организационных, технических и лечебно-профилактических мер.

Организационные и технические меры. Организационные меры идентичны тем, которые проводятся при борьбе с шумом.

Технические меры принимаются по нескольким направлениям:

Уменьшение или устранение неуравновешенных сил;

Уход от резонанса динамическим виброгашением;

Применение вибродемпфирования;

Виброизоляция оборудования;

Виброзащита.

Уменьшение или устранение неуравновешенных сил в источнике возникновения вибрации производится за счет применения современных конструктивных решений, например, заменой кулачковых и кривошипно-шатунных механизмов гидроприводом механизмов.

Уход от резонанса динамическим виброгашением состоит в правильном подборе масс или жесткости элементов колеблющейся системы. Для гашения вибрации на современных автомобилях используют специальный генератор колебаний, который создает колебания частотой, совпадающей с гасимой, но находящейся с ней в противо-фазе. Для устранения вибрации автомобильных колес производят их балансировку. В конструкции перфораторов вводят качающиеся виб-рогасящие рукоятки.

Применяют вибродемпфирование или вибропоглощение с помощью массивных фундаментов (рис. 3.4), а также превращение механической энергии вибрации в тепловую путем использования материалов с большим внутренним трением (пластмасс, дерева, резины, битуминизированного войлока со слоем фольги), нанесение на вибрирующие поверхности упруговязких покрытий.

Рис. 3.4. Установка силового агрегата на вибропоглощающий массивный фундамент в грунте

В последних технических проектах современных локомотивов принято многоступенчатое вибродемпфирование всей кабины резинометалличе-скими амортизаторами. В результате этого на современных тепловозах и электровозах достигнуто снижение параметров вибрации до уровней ПДУ.

Виброизоляция оборудования чаще всего осуществляется установкой виброизолирующих опор — упругих прокладок или пружин (рис. 3.5—3.7).


Рис. 3.5. Установка агрегата на фундамент через виброизолирующую прокладку: 1 — фундамент; 2 — виброизолирующая прокладка; 3 — виброизолирующая втулка; 4 — анкерный болт с гайкой; 5 — плита; 6 — опорная конструкция силового агрегата


Рис. 3.6. Виброизолирующая резиновая опора

Рис. 3.7. Схема виброизоляции рабочего места: а — общий вид; б — виброизолятор в разрезе; 1 — опорная плита; 2 — опорная тарелка; 3 — корпус виброизолятора; 4 — пружина; 5 — стакан; 6—упор; 7—виброизолированный пол рабочего места; 8—подвижная крышка корпуса

На транспортных средствах достаточно часто используют именно виброизоляцию, например, на виброизолирующие опоры устанавливают двигатели. В строительстве разделяют упругими элементами перекрытия и несущие конструкций зданий, устраивают «плавающие» полы.

Средствами виброзащиты могут быть и гибкие вставки в коммуникациях воздуховодов.

Гигиенические и лечебно-профилактические меры. Основой для оценки условий труда по вибрационным факторам и защиты работающих от последствий превышения их допустимых уровней, отнесения условий труда к тому или иному классу вредности и опасности по уровню их воздействия на работника является документ «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» Р 2.2.2006-05.

В соответствии с положением о режиме труда работников виброопасных профессий общее время контакта с вибрирующими машинами, вибрация которых соответствует санитарным нормам, не должно превышать 2/3 длительности смены.

К работе с вибрирующими машинами и оборудованием допускаются лица не моложе 18 лет, получившие соответствующую квалификацию и прошедшие медицинское освидетельствование.

Работа с вибрирующим оборудованием, как правило, должна проводиться в отапливаемых помещениях. При невозможности создания подобных условий (работа на открытом воздухе, подземные работы и т.п.) для периодического обогрева должны быть предусмотрены специальные отапливаемые помещения с температурой воздуха не ниже 22 °С.

Снижению уровня отрицательного воздействия вибрации на здоровье способствует применение индивидуальных средств защиты от вибрации (гасящие вибрацию перчатки, рукавицы и специальная обувь).

Поделитесь с друзьями или сохраните для себя:

Загрузка...