Скачать презентацию правильные многогранники. Цель История Правильные многогранники Виды правильных многогранников - ТетраэдрТетраэдр - КубКуб - ОктаэдрОктаэдр - ДодекаэдрДодекаэдр - ИкосаэдрИкосаэдр


















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • ознакомить учащихся с понятием правильного многогранника и с пятью типами правильных многогранников,
  • способствовать формированию навыков использования компьютерных технологий при изучении нового материала
  • способствовать развитию самостоятельной деятельности, умению сравнивать, обобщать.

Оснащение урока:

  • Мультимедийный проектор, экран, компьютеры
  • Презентация «Правильные многогранники»
  • Модели правильных многогранников
  • Карточки – задания «Задачи по готовым чертежам» –Приложение 1
  • Таблица «Правильные многогранники»
  • Раздаточный материал «Кроссворд» – Приложение 2

ХОД УРОКА

1. Организационный момент (5 мин.)

Целевая установка урока (Сообщение темы, цели урока и порядка работы)
Раздел о правильных многогранниках носит описательный характер, на его изучение отводится один урок. Материал о правильных многогранниках существенно дополняет и логически завершает раздел «Многогранники». Фактически здесь продолжается классификация многогранников; из выпуклых многогранников выделяются правильные.

2. Изучение нового материала (15 мин.)

Учителю необходимо организовать работу так, чтобы новое понятие «правильный многогранник» формировалось на основе уже сложившихся представлений обучающихся о правильных призмах, пирамидах и правильных многоугольниках.
Существование только пяти видов правильных многогранников сообщается без доказательства. Доказательство этой теоремы можно рассмотреть на занятиях соответствующего факультативного курса.

Презентация «Правильные многогранники»

Презентация подготовлена по теме "Правильные многогранники" для учащихся 10-11 классов общеобразовательных школ и учащихся профессионально-технических училищ. В материале предлагается историческая справка о правильных многогранниках, их особенностях, свойствах. Приводятся примеры из окружающего мира, где можно встретить многогранники. Презентацию можно использовать на уроках геометрии, элективных курсах, а также на внеклассных мероприятиях по математике.

Использование презентации на уроке позволяет экономить время, сделать изучение материала более интересным, красочным, необычным.

Слайды 2, 3 – Вводится определение правильного многогранника и осуществляется самоконтроль обучающимися усвоения определения.
«Правильных многогранников вызывающе мало, – написал когда-то Л.Кэрролл, – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук».

Слайды 4-9 – Сообщается о существовании только пяти видов правильных многогранников и для каждого из многогранников представлены его рисунок, объемное изображение, развертка поверхности и основные свойства.
С древних времен многогранники привлекают внимание людей своей красотой, совершенством и гармонией.

Слайд 10 – Историческая справка - сведения из истории о Платоне и правильных многогранниках.

Слайд 11 – Элементы правильных многогранников, зависимость между элементами. Теорема Эйлера.

Слайд15 – Леонард Эйлер

Особый интерес к правильным многогранникам связан с красотой и совершенством их форм. Они довольно часто встречаются в природе.

Слайды 12, 13 – Правильные многогранники в природе, в частности, в кристаллографии.

Слайд 14 – Заключение и домашнее задание
После изучения нового материала осуществляется проверка усвоения материала с использованием каркасных и плоскостных моделей многогранников и таблицы «Правильные многогранники». После чего учащиеся приступают к решению задач по готовым чертежам.

3. Решение задач (17 мин.) –Приложение 1

№1. Найдите высоту правильного тетраэдра с ребром 10 см.

Дано : ABCД – правильный тетраэдр,
AВ = 10 см

Найти : высоту тетраэдра

Решение .

1) AF – медиана ΔABС, значит ВF = ______

2) Из ΔABF по теореме _______ найдем АF

AF 2 = AB 2 – BF 2

3) О делит отрезок AF в отношении 2:1, поэтому АО = _____________________

4) Из ΔADO по теореме Пифагора найдем DO

DO 2 = ____________
DO = ____________

Ответ: ______см

№2. Решите задачу, используя план решения

Кристалл имеет форму октаэдра, состоящего из двух правильных пирамид с общим основанием, ребро основания пирамиды 6 см. Высота октаэдра 14 см. Найдите площадь боковой поверхности кристалла.

Решение.

1) Sбок = 2 Sпир = p ∙ SK (где SK – апофема, p – полупериметр ABCD)

2) Находим ОК _________________________

3) Находим SO ________________________
______________________________________

4) Находим SK ________________________
______________________________________

5) Вычисляем Sбок ______________________
______________________________________

№3. Докажите, что концы двух непараллельных диагоналей противолежащих граней куба являются вершинами тетраэдра.

4. Дополнительное задание.

Кроссворд (работа в парах) Приложение 2
В зависимости от уровня подготовленности класса или группы обучающихся можно предложить им дополнительное задание в виде кроссворда. Если класс или группа имеют низкие математические способности, то кроссворд можно предложить к решению на следующем уроке как повторение ранее изученного материала.

5. Итоги урока (5 мин.)

Итог урока предусматривает обсуждение с учащимися в конце урока не только успешности реализации поставленных целей, но и что понравилось (не понравилось) и почему, что лично для него было полезным, что бы ему хотелось повторить, что изменить при дальнейшей работе.

6. Домашнее задание (3 мин.)

Сделать развертки поверхностей правильных многогранников (правильные тетраэдр, куб, октаэдр).
Ответить на вопросы №№ 30, 31 стр. 243 , Погорелов А. В. «Геометрия 10-11»
Решить задачи №57 стр. 249, №70 стр.248

Домашнее задание включает в себя решение задач и построение разверток и моделей правильных многогранников. Учащиеся сами выбирают, какие из рассмотренных многогранников они будут выполнять (можно «разбить» класс или группу на пять групп по количеству типов правильных многогранников и каждой группе предложить изготовление только одного из правильных многогранников).

Определение.Выпуклый многогранник называется
правильным, если все его грани –
равные правильные многоугольники и в
каждой его вершине сходится одно и то
же число ребер. Правильных
многогранников всего пять: тетраэдр,
гексаэдр, октаэдр, додекаэдр, икосаэдр.

Тетраэдр
Октаэдр
Тетраэдр - простейший многогранник, гранями
которого являются четыре треугольника. У
тетраэдра 4 грани, 4 вершины и 6 рёбер. Тетраэдр, у
которого все грани - равносторонние
треугольники, называется
правильным. У правильного
тетраэдра все двугранные углы при рёбрах и
все трёхгранные углы при вершинах равны.
Октаэдр - имеет 8 треугольных граней, 12 рёбер, 6
вершин, в каждой его вершине сходятся 4 ребра.

Примеры правильных многогранников:

Икосаэдр
Куб
Икосаэдр - правильный выпуклый
многогранник, двадцатигранник. Каждая из 20
граней представляет собой
равносторонний треугольник. Число ребер равно
30, число вершин - 12. Икосаэдр имеет
59 звёздчатых форм.
Куб - правильный многогранник, каждая грань
которого представляет собой квадрат. Вершин -
8, Рёбер - 12, Граней - 6.

Примеры правильных многогранников:

Додекаэдр
Додекаэдр - составлен из
двенадцати правильных
пятиугольников, являющихся его
гранями.
Каждая вершина додекаэдра
является вершиной трёх правильных
пятиугольников. Таким образом,
додекаэдр имеет 12 граней
(пятиугольных), 30 рёбер и 20
вершин (в каждой сходятся 3 ребра).

Характеристики и формулы:

Элементы симметрии правильного тетраэдра:
Правильный тетраэдр не имеет центра
симметрии. Зато он имеет три оси
симметрии и шесть плоскостей
симметрии.

Элементы симметрии правильного октаэдра:

Правильный октаэдр имеет центр
симметрии - точку пересечения его осей
симметрии. Три из 9 плоскостей
симметрии тетраэдра проходят через
каждые 4 вершины октаэдра, лежащие в
одной плоскости. Шесть плоскостей
симметрии проходят через две вершины,
не принадлежащие одной грани, и
середины противоположных ребер.

Элементы симметрии правильного икосаэдра:

Правильный икосаэдр имеет 15 осей
симметрии, каждая из которых проходит
через середины противоположных
параллельных ребер. Точка пересечения
всех осей симметрии икосаэдра является
его центром симметрии. Плоскостей
симметрии также 15. Плоскости
симметрии проходят через четыре
вершины, лежащие в одной плоскости, и
середины противолежащих параллельных
ребер.

Элементы симметрии куба:

Куб имеет один центр симметрии -
точку пересечения его диагоналей, также
через центр симметрии проходят 9 осей
симметрии. Плоскостей симметрии у куба
также 9 и проходят они либо через
противоположные ребра.

Элементы симметрии правильного додекаэдр:

Правильный додекаэдр имеет центр
симметрии и 15 осей симметрии. Каждая
из осей проходит через середины
противолежащих параллельных ребер.
Додекаэдр имеет 15 плоскостей
симметрии. Любая из плоскостей
симметрии проходит в каждой грани
через вершину и середину
противоположного ребра.

Вся информация взята из:

http://licey102.k26.ru/
http://math4school.ru
wikipedia.org
Учебник за 10-11 класс по геометрии

Правильные и полуправильные многогранники

В своей деятельности человек повсюду сталкивается с необходимостью изучать форму, размеры, взаимное расположение пространственных фигур. Важный класс тел образуют многогранники – тела, граница которых состоит из многоугольников. В необъятном океане многогранных форм выделяются своим совершенством пять правильных многогранников, или Платоновых тел.

Многогранник - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями.

Стороны граней называются ребрами многогранника, а концы ребер - вершинами многогранника. По числу граней различают четырехгранники, пятигранники и т. д.

Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней. Выпуклый многогранник называется правильным, если все его грани - правильные одинаковые многоугольники и все многогранные углы при вершинах равны.

Тетраэдр (от греческого tetra – четыре и hedra – грань) - правильный многогранник, составленный из 4 равносторонних треугольников.

Кристаллы белого фосфора образованы молекулами Р4, Такая молекула имеет вид тетраэдра. Молекулы зеркальных изомеров молочной кислоты также являются тетраэдрами. Кристаллическая решётка метана имеет форму тетраэдра. Метан горит бесцветным пламенем. С воздухом образует взрывоопасные смеси. Используется как топливо.

Сфалерит - сульфид цинка (ZnS). Кристаллы этого минерала имеют форму тетраэдров, реже – ромбододекаэдров

Куб (гексаэдр)

Каждая из 8 вершин куба является вершиной 3 квадратов.

У куба 12 ребер, имеющих равную длину.

Центром симметрии куба является точка пересечения его диагоналей. Через центр симметрии проходят 9 осей симметрии. Ось симметрии куба может проходить либо через середины параллельных ребер, не принадлежащих одной грани, либо через точку пересечения диагоналей противоположных граней.

Куб передает форму кристаллов поваренной соли NaCl.

Форму куба имеют кристаллические решётки многих металлов (Li , Na , Cr , Pb , Al , Au , и другие)

Октаэдр (от греческого okto – восемь и hedra – грань) – правильный многогранник, составленный из 8равносторонних треугольников.

Форму октаэдра имеет монокристалл алюмокалиевых кварцев, формула которого K (AL (SO 4)2) * 12 H 2 O . Они применяются для протравливания тканей, выделки кожи.

Одним из состояний полимерной молекулы углерода, наряду с графитом,является алмаз Алмазы обычно имеют октаэдр в качестве формы огранки.

Алмаз (от греческого adamas – несокрушимый) – бесцветный или окрашенный кристалл с сильным блеском в виде октаэдра.

Кристаллы алмаза представляют собой гигантские полимерные молекулы и обычно имеют форму огранки октаэдра, ромбододекаэдра, реже - куба или тетраэдра.

Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) это правильный многогранник, составленный из двенадцати равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер

Вирус полиомиелита имеет форму додекаэдра. Он может жить и размножаться только в клетках человека и приматов.

На микроскопическом уровне, додекаэдр и икосаэдр являются относительными параметрами ДНК. Можно увидеть также, что молекула ДНК представляет собой вращающийся куб. При повороте куба последовательно на 72 градуса по определённой модели, получается икосаэдр, который, в свою очередь, составляет пару додекаэдру. Таким образом, двойная нить спирали ДНК построена по принципу двухстороннего соответствия: за икосаэдром следует додекаэдр, затем опять икосаэдр, и так далее. Это вращение через куб создаёт молекулу ДНК.

В книге Дана Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров.

Икосаэдр - правильный выпуклый многогранник, составленный из 20 правильных треугольников. У икосаэдра 30 ребер.

В одном из своих диалогов Платон связал правильные многогранники с 4я стихиями. Тетраэдру соответствовал огонь, кубу – земля, октаэдру - воздух, икосаэдру – вода. Додекаэдру соответствовала пятая стихия – эфир.

Правильных многоугольников бесконечно много: при каждом n =>3 имеется правильный n – угольник(причем только один, с точностью до подобия). Правильных многогранников всего пять.

Пожалуй, важнейшее свойство выпуклых многогранников было обнаружено Рене Декартом около 1620г. ту же формулу переоткрыл Леонард Эйлер, когда занимался описанием типов выпуклых многогранников в зависимости от числа их вершин.

Пусть В -- число вершин выпуклого многогранника, Р -- число его рёбер и Г -- число граней. Тогда верно равенство В-Р+Г=2.

Это число называется эйлеровой характеристикой многогранника.

Но на пяти правильных телах история многогранников не остановилась. Вслед за правильными телами Платона были открыты полуправильные тела Архимеда.

Архимедовыми телами называются полуправильные, однородные выпуклые многогранники, то есть выпуклые многогранники, все многогранные углы которых равны, а грани - правильные многогранники нескольких типов (этим они отличаются от платоновых тел, грани которых - правильные многоугольники одного типа). Открытие тринадцати полуправильных выпуклых многогранников приписывается Архимеду. Теорией этих тел занимался также Иоган Кеплер.

Простейшим примером архимедова многогранника может служить архимедова призма, т. е. правильная n-угольная призма с квадратными боковыми гранями.

Другой пример - так называемая п-угольная архимедова антипризма. Она может быть получена, если одно из оснований правильной n-угольной призмы (n>4) повернуть вокруг оси призмы на угол - и затем соединить отрезками каждую вершину этого основания с ближайшими вершинами другого основания; при этом высота призмы должна быть подобрана так, чтобы эти отрезки оказались равными стороне основания (иначе говоря, боковые грани антипризмы должны быть правильными треугольниками). Меняя n, мы получим две бесконечные серии архимедовых многогранников-призм и антипризм.

Самые простые фигуры получаются из правильных многогранников путём «усечения», состоящим в отсечении плоскостями углов многогранника.

Если срезать углы тетраэдра плоскостями, каждая из которых отсекает третью часть его рёбер, выходящих из одной вершины, то получим усечённы тетраэдр, имеющий восемь граней. Из них четыре – правильные шестиугольники и четыре – правильные треугольники. В каждой вершине этого многогранника сходятся три грани.

Обратим внимание на то, что поверхность футбольного мяча изготавливают в форме поверхности усечённого икосаэдра

Второй способ получения полуправильных многогранников заключается в отсекании частей куба плоскостью проходящей через середины его рёбер, выходящих из одной вершины. В результате получаем полуправильный многогранник, который называется кубооктаэдр. Его гранями являются шесть квадратов, как у куба, и восемь правильных треугольников, как у октаэдра.

Третий способ заключается в совмещение первого и второго метода. Отсекающие плоскости провести через середины рёбер, выходящих из одной вершины и операция «усечения».

Любопытно, что во второй половине XX в. было обнаружено еще одно тело Архимеда - псевдоромбокубооктаэдр, которое не может быть получено путем однотипных усечений тела Платона и поэтому в течение 2000 лет оставалось незаме­ченным.

В конце 50-х - начале 60-х годов XX века несколько математиков практически одновременно, независимо друг от друга указали на существование псевдоромбокубооктаэдра. Псевдоромбокубооктаэдр состоит из граней куба и октаэдра, к которым добавлены ещё 12 квадратов.

Весьма оригинальна космологическая гипотеза немецкого астронома Иоганна Кеплера, в которой он связал некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников. Между каждой парой "небесных сфер", по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр.

Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна. Эта модель выглядела для своего времени довольно правдоподобно. На данный момент эта теория полностью отвергнута.

Звёздчатый октаэдр. Он был открыт Леонардо Да Винчи, затем спустя почти 100 лет переоткрыт И.Кеплером, и назван им "Stella octangula" – звезда восьмиугольная. Отсюда октаэдр имеет и второе название "stella octangula Кеплера". У октаэдра есть только одна звездчатая форма. Её можно рассматривать как соединение двух тетраэдров.

Большой звездчатый додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого звездчатого додекаэдра – пентаграммы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра. Большой звездчатый додекаэдр был впервые описан Кеплером в 1619 г.

Кеплер не додумался, что у полученной им фигуры есть двойник. Многогранник, который называется «большой додекаэдр» - построил французский геометр Луи Пуансон спустя двести лет после кеплеровских звездчатых фигур.

Звёздчатый икосаэдр . Икосаэдр имеет двадцать граней. Если каждую из них продолжить неограниченно, то тело будет окружено великим многообразием отсеков – частей пространства, ограниченных плоскостями граней. Все звездчатые формы икосаэдра можно получить добавлением к исходному телу таких отсеков. Не считая самого икосаэдра, продолжения его граней отделяют от пространства 20+30+60+20+60+120+12+30+60+60 отсеков десяти различных форм и размеров. Большой икосаэдр (см. рис) состоит из всех этих кусков, за исключением последних шестидесяти.

Икосододекаэдр имеет 32 грани из которых 12 являются правильными пятиугольными гранями, а остальные 20 – правильные треугольники.

Правильные многогранники на протяжении всей истории человечества не переставали восхищать пытливые умы симмет­рией, мудростью и совершенством своих форм.

Cлайд 1

Cлайд 2

СИММЕТРИЯ В ПРОСТРАНСТВЕ “Симметрия является той идеей, посредством которой человек пытался постичь и создать порядок, красоту и совершенство” (Г.Вейль) Симметрия («соразмерность») - соответствие, неизменность (инвариантность), проявляемая при каких-либо преобразованиях. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы, сохраняя одну точку на месте. «Витрувианский человек» Ленардо Да Винчи (1490,Венеция)

Cлайд 3

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА1. Точка О считается симметричной самой себе. А А1

Cлайд 4

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А1 называются симметричными относительно прямой (ось симметрии), если прямая проходит через середину отрезка АА1 и перпендикулярна этому отрезку. Каждая точка прямой а считается симметричной самой себе. А1

Cлайд 5

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А1 называются симметричными относительно плоскости (плоскость симметрии), если эта плоскость проходит через середину отрезка АА1 и перпендикулярна этому отрезку. Каждая точка плоскости считается симметричной самой себе

Cлайд 6

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией

Cлайд 7

ПРИМЕРЫ СИММЕТРИИ ПЛОСКИХ ФИГУР Параллелограмм имеет только центральную симметрию. Его центр симметрии – точка пересечения диагоналей Равнобокая трапеция имеет только осевую симметрию. Её ось симметрии – перпендикуляр, проведенный через середины оснований трапеции Ромб имеет и центральную, и осевую симметрию. Его ось симметрии – любая из его диагоналей; центр симметрии – точка их пересечения

Cлайд 8

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ - 5 ПЛАТОНОВЫХ ТЕЛ Обитатели даже самой отдаленной галактики не могут играть в кости, имеющие форму неизвестного нам правильного выпуклого многогранника. М. Гарднер Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер. Также все ребра правильного многоугольника равны, как и все двугранные углы, содержащие две грани с общим ребром. Правильного многогранника, гранями которого являются n-угольники при n > или = 6, не существует!

Cлайд 9

ПРАВИЛЬНЫЙ ТЕТРАЭДЕР Составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Сумма плоских углов при каждой вершине ровна 180°. Элементы симметрии: Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии. S полн Объем Высота Вершин – 4 Граней – 6 Ребер – 4

Cлайд 10

КУБ Составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Сумма плоских углов при каждой вершине ровна 270°. 6 граней, 8 вершин и 12 ребер Элементы симметрии: Куб имеет центр симметрии - центр куба, 9 осей и плоскостей симметрии R опис. окр. S полн r впис. окр

Cлайд 11

ПРАВИЛЬНЫЙ ОКТАЭДР Составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 240°. Элементы симметрии: Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии 8 граней 6 вершин 12 ребер
Поделитесь с друзьями или сохраните для себя:

Загрузка...