Исследование атомной энергетики. Атомная энергетика в современном мире

В течение следующих 50 лет человечество будет потреблять энергии больше, чем было израсходовано за всю предыдущую историю. Сделанные ранее прогнозы о темпах роста энергопотребления не оправдались: оно растет намного быстрее. Ожидается, что к 2030 году оно увеличится на 33% по сравнению с 2016 годом и составит 32,9 трлн кВт∙ч. Наибольший рост придется на Азию, где потребление электроэнергии вырастет в 1,5 раза (с 10,8 до 16,4 трлн кВт∙ч).

Прогнозы о развитии новых энерготехнологий также не оправдались. Новые источники энергии заработают в промышленном масштабе и по конкурентоспособным ценам не ранее 2030 года. Все острее встает проблема нехватки ископаемых энергоресурсов. Возможности строительства новых гидроэлектростанций тоже весьма ограниченны.

Не стоит забывать и о борьбе с «парниковым эффектом», накладывающей ограничения на сжигание нефти, газа и угля на тепловых электростанциях (ТЭС). Мировой уровень выделяемого углекислого газа составляет около 32 млрд тонн в год и продолжает расти. Прогнозируется, что к 2030 году объем выделяемого углекислого газа превысит 34 млрд тонн в год.


Решением проблемы может стать активное развитие ядерной энергетики, одной из самых молодых и динамично развивающихся отраслей глобальной экономики. Все большее количество стран сегодня приходят к необходимости начала освоения мирного атома.

Установленные мощности мировой атомной энергетики составляют 390 гигаватт. Если бы вся эта мощность генерировалась за счет угольных и газовых источников, то в атмосферу ежегодно выбрасывалось бы дополнительно около 2 млрд тонн углекислого газа. По оценкам межправительственной группы экспертов по изменению климата, все бореальные леса (таежные леса, расположенные в северном полушарии) ежегодно поглощают около 1 млрд тонн СО2, а все леса планеты – 2,5 млрд тонн углекислоты. То есть, если за критерий взять влияние на уровень СО2 в атмосфере, атомная энергетика соизмерима с «экологической мощностью» всех лесов планеты.

В чем преимущества ядерной энергетики?

Огромная энергоемкость

1 килограмм урана с обогащением до 4%, используемого в ядерном топливе, при полном выгорании выделяет энергию, эквивалентную сжиганию примерно 100 тонн высококачественного каменного угля или 60 тонн нефти.

Повторное использование

Расщепляющийся материал (уран-235) выгорает в ядерном топливе не полностью и может быть использован снова после регенерации (в отличие от золы и шлаков органического топлива). В перспективе возможен полный переход на замкнутый топливный цикл, что означает практически полное отсутствие отходов.

Снижение «парникового эффекта

Интенсивное развитие ядерной энергетики можно считать одним из средств борьбы с глобальным потеплением. К примеру, атомные станции в Европе ежегодно позволяют избежать эмиссии 700 миллионов тонн СО2. Действующие АЭС России ежегодно предотвращают выброс в атмосферу около 210 млн тонн углекислого газа. По этому показателю Россия находится на четвертом месте в мире.

Развитие экономики

Строительство АЭС обеспечивает экономический рост, появление новых рабочих мест: 1 рабочее место при сооружении АЭС создает более 10 рабочих мест в смежных отраслях. Развитие атомной энергетики способствует росту научных исследований и объемов экспорта высокотехнологичной продукции.

По уровню научно-технических разработок российская атомная энергетика является одной из лучших в мире. Предприятия имеют огромные возможности для решения повседневных или масштабных задач. Специалисты прогнозируют перспективное будущее в этой области, так как РФ имеет большие запасы руд для выработки энергии.

Краткая история развития атомной энергетики в России

Атомная отрасль берет свое начало со времен СССР, когда планировалось реализовать один из авторских проектов о создании взрывчатки из уранового вещества. Летом, в 1945 году благополучно прошло испытание атомное оружие в США, а в 1949 году на Семипалатинском полигоне впервые использовали ядерную бомбу РДС-1. Дальнейшее развитие атомной энергетики в России было следующим:


Научно-производственные коллективы трудились много лет для достижения высокого уровня в атомном оружии, и останавливаться на достигнутом не собираются. Позже вы узнаете о перспективах в этой области до 2035 года.

Действующие АЭС в России: краткая характеристика

В настоящее время существует 10 действующих АЭС. Особенности каждой из них будут рассмотрены далее.


  • №1 и №2 с реактором АМБ;
  • №3 с реактором БН-600.

Вырабатывает до 10% от общего объема электрической энергии. В настоящее время многие системы Свердловска находятся в режиме длительной консервации, а эксплуатируется только энергоблок БН-600. Белоярская АЭС расположена в г. Заречный.

  1. Билибинская АЭС – единственный источник, снабжающий теплом г. Билбино и имеющий мощность 48 МВт. Станция вырабатывает около 80% энергии и соответствует всем требованиям, предъявляемым к установке аппаратуры:
  • максимальная простота эксплуатации;
  • повышенная надежность работы;
  • защита от механических повреждений;
  • минимальный объем монтажных работ.

Система имеет важное преимущество: при неожиданном прерывании работы блока ей не наносится вред. Станция расположена в Чукотском автономном округе, в 4,5, расстояние до Анадыря – 610 км.


Каково состояние атомной энергетики сегодня?

Сегодня существует более 200 предприятий, специалисты которых не покладая рук трудятся над совершенством атомной энергетики России . Поэтому мы уверенно двигаемся вперед в этом направлении: разрабатываем новые модели реакторов и постепенно расширяем производство. Согласно мнению участников Всемирной ядерной ассоциации, сильная сторона России — развитие технологий на быстрых нейронах.

Российские технологии, многие из которых были разработаны компанией «Росатом», высоко ценятся за рубежом за относительно небольшую стоимость и безопасность. Следовательно, у нас достаточно высокий потенциал в атомной отрасли.

Зарубежным партнерам РФ оказывает множество услуг, касающихся рассматриваемой деятельности. К их числу относится:

  • возведение атомных энергоблоков с учетом правил безопасности;
  • поставка ядерного топлива;
  • вывод использованных объектов;
  • подготовка международных кадров;
  • помощь в развитии научных работ и ядерной медицины.

Россия строит большое количество энергоблоков за границей. Успешно были такие проекты, как «Бушер» или «Куданкулам», созданные для иранской и индийской АЭС. Они позволили создавать чистые, безопасные и эффективные источники энергии.

Какие проблемы, связанные с атомной отраслью, возникали в России?

В 2011 году на строящейся ЛАЭС-2 произошел обвал металлических конструкций (вес около 1200 тонн). В ходе надзорной комиссии обнаружилась поставка несертифицированной арматуры, в связи с чем были приняты следующие меры:

  • наложение штрафа на ЗАО «ГМЗ-Химмаш» в размере 30 тыс. руб.;
  • выполнение расчетов и проведение работ, направленных на усиление арматуры.

По мнению Ростехнадзора, главной причиной нарушения является недостаточный уровень квалификации специалистов «ГМЗ-Химмаш». Слабое знание требований федеральных норм, технологий изготовления подобного оборудования и конструкторской документации привело к тому, что многие подобные организации лишились лицензий.

В Калининской АЭС повысился уровень тепловой мощности реакторов. Такое событие крайне нежелательно, так как появляется вероятность возникновения аварии с серьезными радиационными последствиями.

Многолетние исследования, проведенные в зарубежных странах, показали, что соседство с АЭС приводит к росту заболеваний лейкемией. По этой причине в России было множество отказов от эффективных, но очень опасных проектов.

Перспективы АЭС в России

Прогнозы дальнейшего использования атомной энергии противоречивы и неоднозначны. Большинство из них сходится к мнению, что к середине XXI века потребность возрастет в связи с неизбежным увеличением численности населения.

Министерство энергетики РФ сообщило энергетическую стратегию России на период до 2035 года (сведения поступили в 2014 году). Стратегическая цель атомной энергетики включает в себя:


С учетом установленной стратегии, в дальнейшем предусматривается решить следующие задачи:

  • улучшить схему производства, обращения и захоронения топливно-сырьевых ресурсов;
  • развить целевые программы, обеспечивающие обновление, устойчивость и повышение эффективности имеющейся топливной базы;
  • реализовать наиболее эффективные проекты с высоким уровнем безопасности и надежности;
  • увеличить экспорт ядерных технологий.

Государственная поддержка массового производства атомных энергоблоков – основа благополучного продвижения товаров за рубеж и высокой репутации России на международном рынке.

Что препятствует развитию атомной энергетики в России?

Развитие атомной энергетики в РФ сталкивается с определенными трудностями. Вот основные из них:


В России атомная энергетика является одним из важных секторов экономики. Успешная реализация разрабатываемых проектов способна помочь развить остальные отрасли, но для этого нужно приложить немало усилий.

Сегодня примерно 17% мирового производства электроэнергии приходится на атомные электростанции (АЭС). В некоторых странах ее доля значительно больше. Например, в Швеции она составляет около половины всей электроэнергии, во Франции - около трех четвертей. Недавно согласно принятой в Китае программе вклад энергии атомных электростанций предусмотрено увеличить в пять-шесть раз. Заметную, хотя пока не определяющую, роль АЭС играют в США и России.

Более сорока лет назад, когда дала ток первая атомная станция в мало кому известном в то время городке Обнинске, многим казалось, что атомная энергетика - вполне безопасная и экологически чистая. Авария на одной из американской АЭС, а затем катастрофа в Чернобыле показали, что на самом деле атомная энергетика сопряжена с большой опасностью. Люди напуганы. Общественное сопротивление сегодня таково, что строительство новых АЭС в большинстве стран практически остановлено. Исключение составляют лишь восточно-азиатские страны - Япония, Корея, Китай, где атомная энергетика продолжает развиваться.

Специалисты, хорошо знающие сильные и слабые стороны реакторов, смотрят на атомную опасность более спокойно. Накопленный опыт и новые технологии позволяют строить реакторы, вероятность выхода которых из-под контроля хотя и не равна нулю, но крайне мала. На современных атомных предприятиях обеспечен строжайший контроль радиации в помещениях и в каналах реакторов: сменные комбинезоны, специальная обувь, автоматические детекторы излучений, которые ни за что не откроют шлюзовые двери, если на вас есть хотя бы небольшие следы радиоактивной "грязи". Например, на атомной электростанции в Швеции, где чистейшие пластиковые полы и непрерывная очистка воздуха в просторных помещениях, казалось бы, исключают даже мысль о сколь-нибудь заметном радиоактивном заражении.

Атомной энергетике предшествовали испытания ядерного оружия. На земле и в атмосфере проводились испытания ядерных и термоядерных бомб, взрывы которых ужасали мир. В то же время инженеры разрабатывали и ядерные реакторы, предназначенные для получения электрической энергии. Приоритет получило военное направление - производство реакторов для кораблей военно-морского флота. Военным ведомствам особенно перспективным представлялось использование реакторов на подводных лодках: такие суда имели бы практически неограниченный радиус действия и могли бы годами находиться под водой. Американцы сосредоточили свои усилия на создании корпусных водо-водяных реакторов, в которых замедлителем нейтронов, и теплоносителем служила обычная ("легкая") вода и которые обладали большой мощностью на единицу массы энергетической установки. Были сооружены полномасштабные наземные прототипы транспортных реакторов, на которых проверялись все конструктивные решения и отрабатывались системы управления и безопасности. В середине 50-х годов XX в. первая подводная лодка с атомным двигателем "Наутилиус" прошла под льдами Ледовитого океана.

Аналогичные работы велись и в нашей стране, только наряду с водо-водяными реакторами разрабатывался канальный графитовый реактор (в нем теплоносителем тоже служила вода, а замедлителем - графит). Однако по сравнению с водо-водяным реактором у графитового мала удельная мощность. В то же время такой реактор обладал важным преимуществом - уже имелся значительный опыт сооружения и эксплуатации промышленных графитовых реакторов, отличающихся от транспортных установок главным образом давлением и температурой охлаждающей воды. А наличие опыта означало экономию времени и средств на опытно-конструкторские работы. При создании наземного прототипа графитового реактора для транспортных установок стала очевидной его бесперспективность. И тогда было решено использовать его для атомной энергетики. Реактор AM, а точнее, его турбогенератор мощностью 5000 кВт 27 июня 1954 г. подключили к электрической сети, и весь мир узнал, что в СССР пущена первая в мире АЭС - атомная электростанция.

Наряду с канальными графитовыми реакторами в нашей стране, как и в США, с середины 50-х XX в. годов развивалось направление, основанное на использовании водо-водяных энергетических реакторов (ВВЭР). Их характерная особенность - огромный корпус диаметром 4,5 м и высотой 11м, рассчитанный на высокое давление - до 160 атм. Производство и транспортировка таких корпусов к площадке АЭС - чрезвычайно сложная задача. Американские фирмы, приступив к развитию атомной энергетики на базе реакторов PWR, возвели на берегах рек заводы для производства реакторных корпусов, построили баржи для их перевозки к месту строительства АЭС и краны грузоподъемностью в 1000 т. Этот продуманный подход позволил США не только удовлетворить собственные потребности, но и захватить в 70-х годах внешний рынок по производству атомной энергии. СССР не мог столь широко и быстро развивать промышленную базу для АЭС с реакторами ВВЭР. В начале лишь один Ижорский завод мог изготавливать по одному корпусу реактора в год. Пуск Аттоммаша состоялся только в конце 70-х годов.

Реактор РБМК (реактор большой мощности, канальный), в котором вода, охлаждающая тепловыделяющие элементы, находится в состоянии кипения, появился как очередной этап последовательного развития канальных графитовых реакторов: промышленный графитовый реактор, реактор первой в мире АЭС, реакторы Белоярской АЭС. Ленинградская АЭС на РБМК проявила свой норов. Несмотря на наличие традиционной автоматической системы регулирования, оператор должен был по мере выгорания топлива все чаще и чаще вмешиваться в управление реактором (до 200 раз в смену). Это было связано с возникновением или усилением в процессе эксплуатации реактора положительных обратных связей, приводящих к развитию неустойчивости с периодом в 10 минут. Для нормального стабильного функционирования какого-либо устройства с положительной обратной связью необходима надежная система автоматического регулирования. Однако всегда существует опасность аварии из-за отказа подобной системы. С проблемой неустойчивости столкнулись и в Канаде, когда пустили в 1971 г. канальный реактор с тяжелой водой в качестве замедлителей нейтронов и кипящей легкой водой в качестве теплоносителя. Канадские специалисты решили не испытывать судьбу и закрыли установку. Сравнительно быстро была разработана новая, приспособленная к РБМК, система автоматического регулирования. Ее внедрение обеспечило приемлемую устойчивость реактора. В СССР развернулось серийное строительство АЭС с реакторами РБМК (нигде в мире подобные установки не использовались).

Несмотря на внедрение новой системы регулирования, страшная угроза осталась. Для реактора РБМК характерны два крайних состояния: в одном из них каналы реактора заполнены кипящей водой, а в другом - паром. Коэффициент размножения нейтронов при заполнении кипящей водой больше, чем при заполнении паром. При таком условии возникает положительная обратная связь, при которой рост мощности вызывает появление дополнительного количества пара в каналах, что в свою очередь приводит к увеличению коэффициента размножения нейтронов, и следовательно, к дальнейшему росту мощности. Это известно давно, еще со времен проектирования РБМК. Однако только после Чернобыльской катастрофы в результате тщательного анализа выяснилось, что возможен разгон реактора на мгновенных нейтронах. В 1 час 23 мин. 26 апреля 1986 г. произошел взрыв реактора 4-го блока Чернобыльской АЭС. Ее последствия ужасны.

Так нужно ли развивать атомную энергетику? Выработка энергии на АЭС и ACT (атомных станциях теплоснабжения) - это наиболее экологически чистый способ производства энергии. Энергия ветра, Солнца, подземного тепла и т.д. не может сразу и быстро заменить атомную энергию. Согласно прогнозу в США в начале XXI в. на все подобные способы производства энергии будет приходиться не более 10% вырабатываемой во всем мире энергии.

Спасти нашу планету от загрязнения миллионами тонн углекислого газа, окиси азота и серы, которые постоянно выбрасываются ТЭЦ, работающими на угле, мазуте, перестать сжигать в огромных количествах кислород, можно лишь с помощью атомной энергетики. Но только при выполнении одного условия: Чернобыль не должен повториться. Для этого необходимо создать абсолютно надежный энергетический реактор. Но в природе не бывает ничего абсолютно надежного, все процессы, не противоречащие законам природы, происходят с большей или меньшей вероятностью. И противники атомной энергетики рассуждают примерно так: авария маловероятна, но нет никаких гарантий, что она не случится сегодня или завтра. Задумываясь над этим, нужно учесть следующее. Во-первых, взрыв реактора РБМК в том состоянии, в котором он эксплуатировался до аварии, отнюдь не маловероятное событие. Во-вторых, при таком подходе мы все должны жить в постоянном страхе, что Земля не сегодня-завтра столкнется с крупным астероидом, вероятность такого события ведь тоже не равна нулю. Думается, можно считать абсолютно безопасным реактор, для которого вероятность крупной аварии достаточно мала.

В СССР накоплен многолетний опыт сооружения и эксплуатации АЭС с реакторами ВВЭР (аналогичными американским PWR), на базе которых может быть в относительно короткие сроки создан в большей степени безопасный энергетический реактор. Такой, что в случае аварийной ситуации все радиоактивные осколки деления ядер урана должны остаться в пределах защитной оболочки

Развитые страны с большой численностью населения в обозримом будущем не смогут из-за приближающейся экологической катастрофы обойтись без атомной энергетики даже при некоторых запасах обычных видов топлива. Режим экономии энергии может лишь на некоторое время отодвинуть проблему, но не решить ее. Кроме того, многие специалисты считают, что в наших условиях даже временного эффекта добиться не удастся: эффективность предприятий по энергоснабжению зависит от уровня развития экономики. Даже США потребовалось 20-25 лет со дня внедрения в промышленность энергоемких производств.

Вынужденная пауза, возникшая в развитии атомной энергетики, должна быть использована для разработки достаточно безопасного энергетического реактора на базе реактора ВВЭР, а также для разработки альтернативных энергетических реакторов, безопасность которых должна находиться на том же уровне, а экономическая эффективность значительно выше. Целесообразно построить демонстрационную АЭС с подземным размещением реактора ВВЭР в наиболее удобном месте, чтобы проверить ее экономическую эффективность и безопасность.

В последнее время предлагаются различные конструктивные решения атомных станций. В частности, компактную АЭС разработали специалисты Санкт-Петербургского морского бюро машиностроения "Малахит". Предлагаемая станция предназначается для Калининградской области, где проблема энергоресурсов стоит достаточно остро. Разработчики предусмотрели использование в АЭС жидкометаллического теплоносителя (сплава свинца с висмутом) и исключают возможность возникновения на ней радиационно-опасных аварий, в том числе при любых внешних воздействиях. Станция отличается экологической чистотой и экономической эффективностью. Все ее основное оборудование предполагается разместить глубоко под землей - в проложенном среди скальных пород туннеле диаметром в 20 м. Это дает возможность свести к минимуму число наземных сооружений и площадь отчуждаемых земель. Структура проектируемой АЭС - модульная, что тоже очень существенно. Проектная мощность Калининградской АЭС - 220 МВт, но может быть по мере необходимости уменьшена или увеличена в несколько раз при помощи изменения числа модулей.

Nuclear power см. Атомная энергетика. В зарубежной литературе употребляются более точные термины «ядерная энергетика» и «ядерная электростанция». У нас укоренились термины «атомная энергетика» и «атомная электростанция». Термины атомной… … Термины атомной энергетики

ЯДЕРНАЯ ЭНЕРГЕТИКА - отрасль энергетики, в к рой источником получаемой полезной энергии (электрической, тепловой) является ядерная энергия, преобразуемая в полезную на атомных энергетич. установках: атомных электростанциях (АЭС), атомных теплоэлектроцентралях (АТЭЦ)… … Физическая энциклопедия

ядерная энергетика - Раздел энергетики, связанный с использованием ядерной энергии для производства тепла и электрической энергии. [ГОСТ 19431 84] ядерная энергетика (атомная энергетика) отрасль энергетики, использующая ядерную энергию для электрификации и… … Справочник технического переводчика

Ядерная энергетика - отрасль энергетики, занимающаяся преобразованием ядерной энергии в другие виды энергии с целью практического применения. Основу ядерной энергетики составляют атомные электростанции. Синонимы: Атомная энергетика См. также: Энергетика Финансовый… … Финансовый словарь

ЯДЕРНАЯ ЭНЕРГЕТИКА - (атомная энергетика) отрасль энергетики, использующая ядерную энергию для электрификации и теплофикации; область науки и техники, разрабатывающая методы и средства преобразования ядерной энергии в электрическую и тепловую. Основа ядерной… … Большой Энциклопедический словарь

ядерная энергетика - Отрасль народного хозяйства, использующая энергию цепной ядерной реакции как источник энергии; особая форма энергии, использующая ядерную реакцию для вращения генераторов и получения электроэнергии. Syn.: атомная энергетика; атомная энергия … Словарь по географии

ЯДЕРНАЯ ЭНЕРГЕТИКА - отрасль (см.), использующая (см. (20)) для электрификации и теплофикации; область науки и техники, разрабатывающая методы и средства преобразования ядерной энергии в электрическую и тепловую. Основа Я. э. атомные электростанции … Большая политехническая энциклопедия

Ядерная энергетика - 5. Ядерная энергетика Раздел энергетики, связанный с использованием ядерной энергии для производства тепла и электрической энергии Источник: ГОСТ 19431 84: Энергетика и электрификация. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

ядерная энергетика - одна из отраслей топливно энергетического комплекса, использующая ядерную энергию для получения тепла и электричества; область науки и техники, занимающаяся изучением способов и методов преобразования ядерной энергии в другие виды энергии. Основу … Энциклопедия техники

ядерная энергетика - (атомная энергетика), отрасль энергетики, использующая ядерную энергию для электрификации и теплофикации; область науки и техники, разрабатывающая методы и средства преобразования ядерной энергии в электрическую и тепловую. Основа ядерной… … Энциклопедический словарь

Книги

  • , Г.А. Бать Категория: Математика Издатель: ЁЁ Медиа , Производитель: ЁЁ Медиа , Купить за 2591 грн (только Украина)
  • Основы теории и методы рассчёта ядерных энергетических реакторов , Бать Г.А. , Ядерная энергетика. Основы теории и методы рассчёта ядерных энергетических реакторов. Год выпуска: 1982 Авторы: Г. А. Бать, Г. Г. Бартоломей, В. Д. Байбаков, М. С. Алхутов. Воспроизведено в… Категория: Математика и естественные науки Серия: Издатель:

Двадцатый век прошел под знаком освоения энергии нового вида, заключенной в ядрах атомов, и стал веком ядерной физики. Эта энергия многократно превышает энергию топлива, применявшуюся человечеством в течение всей его истории.

Уже к середине 1939 года ученые мира располагали важными теоретическими и экспериментальными открытиями в области ядерной физики, что позволило выдвинуть обширную программу исследований в этом направлении. Оказалось, что атом урана можно расщепить на две части. При этом освобождается огромное количество энергии. Кроме того, в процессе расщепления выделяются нейтроны, которые в свою очередь могут расщепить другие атомы урана и вызвать цепную ядерную реакцию. Ядерная реакция деления урана весьма эффективна и далеко превосходит самые бурные химические реакции. Сравним атом урана и молекулу взрывчатого вещества – тринитротолуола (тротила). При распаде молекулы тротила выделяется 10 электронвольт энергии, а при распаде ядра урана – 200 млн. электрон-вольт, т. е. в 20 млн. раз больше.

Эти открытия произвели в научном мире сенсацию: в истории человечества не было научного события, более значительного по своим последствиям, чем проникновение в мир атома и овладение его энергией. Ученые понимали, что главное ее предназначение – производство электроэнергии и применение в других мирных направлениях. С вводом в эксплуатацию в СССР в 1954 г. первой в мире промышленной атомной электростанции мощностью 5 МВт в г. Обнинске началась эра атомной энергетики. Источником производства электроэнергии стало расщепление ядер урана.

Опыт эксплуатации первых АЭС показал реальность и надежность ядерно-энергетической технологии для промышленного производства электроэнергии. Развитые индустриальные страны приступили к проектированию и строительству АЭС с реакторами разных типов. К 1964 г. суммарная мощность АЭС в мире выросла до 5 млн. кВт.

С этого времени началось стремительное развитие атомной энергетики, которая, внося все более значимый вклад в общее производство электроэнергии в мире, стала новой многообещающей энергетической альтернативой. Начался бум заказов на строительство АЭС в США, позднее в Западной Европе, Японии, СССР. Темпы роста атомной энергетики достигли около 30% в год. Уже к 1986 г. в мире работали на АЭС 365 энергоблоков суммарной установленной мощностью 253 млн.кВт. Практически за 20 лет мощность АЭС увеличилась в 50 раз. Строительство АЭС велось в 30 странах мира (рис.1.1).

К тому времени широкую известность получили исследования Римского клуба – авторитетного сообщества ученых с мировыми именами. Выводы авторов исследований сводились к неизбежности достаточно близкого исчерпания природных запасов органических энергетических ресурсов, в том числе нефти, ключевых для мировой экономики, их резкого подорожания в ближайшей перспективе. С учетом этого атомная энергетика пришлась как нельзя более ко времени. Потенциальные запасы ядерного топлива (2 8 U, 2 5 U, 2 2 Th) на длительную перспективу решали жизненно важную проблему топливообеспечения при различных сценариях развития атомной энергетики.

Условия развития атомной энергетики были крайне благоприятны, причем экономические показатели АЭС также вселяли оптимизм, АЭС уже могли успешно конкурировать с ТЭС.

Атомная энергетика позволяла уменьшить потребление органического топлива и резко сократить выбросы загрязняющих веществ в окружающую среду от ТЭС.

Развитие атомной энергетики базировалось на сформировавшемся энергетическом секторе военно-промышленного комплекса – достаточно хорошо освоенных промышленных реакторах и реакторах для подводных лодок с использованием уже созданного для этих целей ядерного топливного цикла (ЯТЦ), приобретенных знаниях и значительном опыте. Атомная энергетика, имевшая огромную государственную поддержку, успешно вписалась в существующую энергетическую систему с учетом присущих этой системе правил и требований.

Проблема энергетической безопасности, обострившаяся в 70-е годы ХХ в. в связи с энергетическим кризисом, вызванным резким повышением цен на нефть, зависимостью ее поставки от политической обстановки, заставила многие страны пересмотреть свои энергетические программы. Развитие атомной энергетики, уменьшая потребление органического топлива, снижает энергетическую зависимость стран, не имеющих или имеющих ограниченные собственные топливно-энерге

тические ресурсы, от их ввоза и укрепляет энергетическую безопасность этих стран.

В процессе быстрого развития атомной энергетики из двух основных типов энергетических ядерных реакторов – на тепловых и быстрых нейтронах – наибольшее распространение в мире получили реакторы на тепловых нейтронах.

Разработанные разными странами типы и конструкции реакторов с разными замедлителями и теплоносителями стали основой национальной ядерной энергетики. Так, в США основными стали водо-водяные реакторы под давлением и кипящие реакторы, в Канаде – тяжеловодные реакторы на природном уране, в бывшем СССР – водо-водяные реакторы под давлением (ВВЭР) и уранографитовые кипящие реакторы (РБМК), росла единичная мощность реакторов. Так, реактор РБМК-1000 электрической мощностью 1000 МВт был установлен на Ленинградской АЭС в 1973 г. Мощность крупных АЭС, например Запорожской АЭС (Украина), достигла 6000 МВт.

Учитывая, что блоки АЭС работают практически с постоянной мощностью, покрывая

АЭС «Три Майл Айленд» (США)

базовую часть суточного графика нагрузок объединенных энергосистем, параллельно с АЭС в мире строились высокоманевренные ГАЭС для покрытия переменной части графика и закрытия ночного провала в графике нагрузок.


Высокие темпы развития атомной энергетики не соответствовали уровню ее безопасности. На основании опыта эксплуатации объектов атомной энергетики, возрастающего научно-технического понимания процессов и возможных последствий возникла необходимость пересмотра технических требований, что вызывало увеличение капвложений и эксплуатационных затрат.

Серьезный удар развитию атомной энергетики был нанесен тяжелой аварией на АЭС «Три Майл Айленд» в США в 1979 г., а также на ряде других объектов, что привело к радикальному пересмотру требований безопасности, ужесточению действующих нормативов и пересмотру программ развития АЭС во всем мире, причинило огромный моральный и материальный ущерб атомной энергетике. В США, которые являлись лидером в атомной энергетике, с 1979 г. прекратились заказы на строительство АЭС, также сократилось их строительство в других странах.

Тяжелейшая авария на Чернобыльской АЭС в Украине в 1986 г., квалифицируемая по международной шкале ядерных инцидентов как авария самого высокого седьмого уровня и вызвавшая экологическую катастрофу на огромной территории, гибель людей, переселение сотен тысяч людей, подорвала доверие мирового сообщества к атомной энергетике.

«Трагедия в Чернобыле – это предупреждение. И не только в ядерной энергетике», – говорил академик В.А. Легасов, член правительственной комиссии, первый заместитель академика А.П. Александрова, возглавлявшего Институт атомной энергии имени И.В. Курчатова.

Во многих странах были приостановлены программы развития атомной энергетики, а в ряде стран вообще отказались от намеченных ранее планов по ее развитию.

Несмотря на это, к 2000 г. на АЭС, работающих в 37 странах мира, вырабатывалось 16% мирового производства электроэнергии.

Предпринятые беспрецедентные усилия по обеспечению безопасности эксплуатируемых АЭС позволили в начале XXI в. восстановить доверие общества к атомной энергетике. Наступает время «ренессанса» в ее развитии.

Кроме высокой экономической эффективности и конкурентоспособности, обеспеченности топливными ресурсами, надежности, безопасности, одним из важных факторов является то, что атомная энергетика относится к экологически наиболее чистым источникам электроэнергии, хотя остается проблема утилизации отработанного топлива.

Стала очевидной необходимость воспроизводства (бридинга) ядерного топлива, т.е. строительства также реакторов на быстрых нейтронах (бридеров), внедрения переработки полученного топлива. Развитие этого направления имело серьезные экономические стимулы и перспективы, велось во многих странах.

В СССР первые экспериментальные работы по промышленному использованию реакторов на быстрых нейтронах были начаты в

1949 г., а с середины 1950-х годов начался ввод в эксплуатацию серии опытно-экспериментальных реакторов БР-1, БР-5, БОР-60 (1969 г.), в 1973 г. была введена в действие двухцелевая АЭС с реактором мощностью 350 МВт для производства электроэнергии и опреснения морской воды, в 1980 году запущен промышленный реактор БН-600 мощностью 600 МВт.

Обширная программа развития этого направления реализовывалась в США. В 1966–1972 гг. был построен экспериментальный реактор «Enrico Fermi l», а в 1980 году введен в эксплуатацию крупнейший в мире исследовательский реактор FFTF мощностью 400 МВт. В Германии первый реактор начал работать в 1974 году, а построенный реактор большой мощности SNR-2 так и не был введен в эксплуатацию. Во Франции в 1973 году был пущен реактор «Phenix» мощностью 250 МВт, а в 1986 г. – «Superphenix» мощностью 1242 МВт. Япония в 1977 г. ввела в эксплуатацию опытный реактор «Joyo», а в 1994 г. – реактор «Monju» мощностью 280 МВт.

В условиях экологического кризиса, с которым мировое сообщество вошло в ХХI век, атомная энергетика может внести значительный вклад в обеспечение надежного электроснабжения, снижение выбросов в окружающую среду парниковых газов и загрязняющих веществ.

Атомная энергетика наилучшим образом отвечает принятым в мире принципам устойчивого развития, одним из важнейших требований которого является наличие достаточных топливно-энергетических ресурсов при стабильном их потреблении в долгосрочной перспективе.

В соответствии с прогнозами, основанными на расчетах и моделировании развития общества и мировой экономики в XXI веке, доминирующая роль электроэнергетики сохранится. К 2030 г. по прогнозу Международного энергетического агентства (МЭА) производство электроэнергии в мире увеличится более чем в 2 раза и превысит 30 трлн. кВт·ч, а согласно прогнозам Международного агентства по атомной энергии (МАГАТЭ) в условиях «ренессанса» атомной энергетики ее доля увеличится до 25% мирового производства электроэнергии, причем уже в течение ближайших 15 лет в мире будет построено свыше 100 новых реакторов, а мощность АЭС возрастет с 370 млн. кВт в 2006 г. до 679 млн. кВт в 2030 г.

В настоящее время активно развивают атомную энергетику страны с высокой ее долей в общем объеме вырабатываемой электроэнергии, включая США, Японию, Южную Корею, Финляндию. Франция, переориентировав электроэнергетику страны на атомную и продолжая ее развивать, с успехом решила энергетическую проблему на многие десятилетия. Доля АЭС в производстве электроэнергии в этой стране достигает 80%. Развивающиеся страны с незначительной еще долей ядерной генерации электроэнергии высокими темпами строят АЭС. Так, Индия заявила о намерении в долгосрочной перспективе построить АЭС мощностью 40 млн. кВт, а Китай – более 100 млн. кВт.

Из 29 блоков АЭС, строившихся в 2006 г., 15 находились в Азии. Планируют впервые ввести АЭС Турция, Египет, Иордания, Чили, Таиланд, Вьетнам, Азербайджан, Польша, Грузия, Белоруссия и другие страны.

Дальнейшее развитие атомной энергетики планирует Россия, которая предусматривает к 2030 г. построить АЭС мощностью 40 млн. кВт. В Украине в соответствии с Энергетической стратегией Украины на период до 2030 г. предусматривается увеличивать выработку АЭС до 219 млрд. кВт·ч, сохранив ее на уровне 50% общей выработки, и повысить мощность АЭС практически в 2 раза, доведя ее до 29,5 млн. кВт, при коэффициенте использования установленной мощности (КИУМ) 85%, в том числе за счет ввода новых блоков мощностью 1–1,5 млн.кВт и продления срока эксплуатации действующих блоков АЭС (в 2006 г. в Украине мощность АЭС составила 13,8 млн. кВт с выработкой 90,2 млрд. кВт·ч электроэнергии, или около 48,7% общей выработки).

Ведущиеся во многих странах работы по дальнейшему совершенствованию реакторов на тепловых и быстрых нейтронах позволят обеспечить дальнейшее повышение их надежности, экономической эффективности и экологической безопасности. При этом важное значение приобретает международное сотрудничество. Так, при реализации в будущем международного проекта ГТ МСР (газотурбинный модульный гелиоохлаждаемый реактор), который характеризуется высоким уровнем безопасности и конкурентоспособности, минимизацией радиоактивных отходов, может повыситься к.п.д. до 50%.

Широкое применение в будущем двухкомпонентной структуры атомной энергетики, включающей АЭС с реакторами на тепловых нейтронах и с реакторами на быстрых нейтронах, воспроизводящих ядерное топливо, повысит эффективность использования природного урана и снизит уровень накопления радиоактивных отходов.

Следует отметить важнейшую роль в развитии атомной энергетики ядерно-топливного цикла (ЯТЦ), который фактически является ее системообразующим фактором. Это вызвано следующими обстоятельствами:

  • ЯТЦ должен обеспечиваться всеми необходимыми структурными, технологическими и конструктивными решениями для безопасной и эффективной работы;
  • ЯТЦ является условием социальной приемлемости и экономической эффективности атомной энергетики и ее широкого использования;
  • развитие ЯТЦ приведет к необходимости объединения задач обеспечения требуемого уровня безопасности АЭС, вырабатывающей электроэнергию, и минимизации рисков, связанных с производством ядерного топлива, включая добычу урана, транспортировку, переработку отработанного ядерного топлива (ОЯТ) и захоронение радиоактивных отходов (единая система требований по безопасности);
  • резкое увеличение добычи и использования урана (начальный этап ЯТЦ) ведет к росту опасности попадания природных долгоживущих радионуклидов в среду обитания, что требует повышения эффективности топливоиспользования, уменьшения количества отходов и замыкания топливного цикла.

Экономическая эффективность работы АЭС зависит напрямую от топливного цикла, включая сокращение времени на перегрузку топлива, повышение эксплуатационных характеристик тепловыделяющих сборок (ТВС). Поэтому важное значение имеет дальнейшее развитие и совершенствование ЯТЦ с высоким коэффициентом использования ядерного топлива, созданием малоотходного замкнутого топливного цикла.

Энергетической стратегией Украины предусматривается развитие национального топливного цикла. Так, добыча урана должна увеличиться с 0,8 тыс. т до 6,4 тыс. т в 2030 году, получит дальнейшее развитие отечественное производство циркония, циркониевых сплавов и комплектующих для тепловыделяющих сборок, а в перспективе создание замкнутого топливного цикла, а также участие в международной кооперации по производству ядерного топлива. Предусматривается корпоративное участие Украины в создании мощностей по изготовлению тепловыделяющих сборок для реакторов ВВЭР и в создании Международного центра по обогащению урана в России, вхождение Украины в предложенный США Международный банк ядерного топлива.

Обеспеченность топливом атомной энергетики имеет важнейшее значение для перспективы ее развития. Современные потребности в природном уране в мире составляют порядка 60 тыс. т при общих запасах около 16 млн.т.

В ХХI в. резко возрастет роль атомной энергетики в обеспечении возрастающего производства электроэнергии в мире с использованием более совершенных технологий. Атомная энергетика пока не имеет серьезного конкурента на длительную перспективу. Чтобы реализовать ее развитие в широких масштабах, она, как уже указывалось, должна обладать следующими свойствами: высокой эффективностью, обеспеченностью ресурсами, энергоизбыточностью, безопасностью, приемлемостью экологического воздействия. Первые три требования могут быть выполнены при использовании двухкомпонентной структуры атомной энергетики, состоящей из тепловых и быстрых реакторов. При такой структуре можно значительно увеличить эффективность использования природного урана, снизить его добычу и ограничить уровень поступления радона в биосферу. Пути достижения необходимого уровня безопасности и снижения капитальных затрат для реакторов обоих типов уже известны, нужны время и средства на их реализацию. К моменту осознания обществом необходимости дальнейшего развития атомной энергетики технология двухкомпонентной структуры будет фактически подготовлена, хотя многое еще необходимо сделать в плане оптимизации ЯЭУ и структуры отрасли, включая и предприятия топливного цикла.

Уровень экологического воздействия в основном определяется количеством радионуклидов в топливном цикле (уран, плутоний) и в хранилищах (Np, Am, Cm, продукты деления).

Риск от воздействия короткоживущих изотопов, например 1 1 I и 9 0 Sr, l 7 Cs, может быть снижен до допустимого уровня за счет повышения безопасности АЭС, хранилищ, предприятий топливного цикла. Приемлемость такого риска можно доказать на практике. Но трудно доказать и невозможно продемонстрировать надежность захоронения долгоживущих актиноидов и продуктов деления в течение миллионов лет.

Несомненно, нельзя отказываться от поиска путей надежного захоронения радиоактивных отходов, но необходимо разрабатывать возможность использования актиноидов для получения энергии, т.е. замыкания топливного цикла не только по урану и плутонию, но и по актиноидам (Np, Am, Cm и др.). Трансмутация опасных долгоживущих продуктов деления в системе реакторов на тепловых нейтронах усложнит структуру атомной энергетики за счет дополнительных технологических процессов по изготовлению и переработке ядерного топлива или увеличит число типов ядерно-энергетических установок. Введение Np, Am, Cm, других актиноидов и продуктов деления в топливо реакторов усложнит их конструкцию, потребует разработки новых видов ядерного топлива, отрицательно скажется на безопасности.

В связи с этим рассматривается возможность создания трехкомпонентной структуры атомной энергетики, состоящей из тепловых и быстрых реакторов и реакторов для сжигания Np, Am, Cm и других актиноидов и трансмутации некоторых продуктов деления.

Важнейшими проблемами являются переработка и удаление радиоактивных отходов, которые могут быть преобразованы в ядерное топливо.

В первой половине ХХI века человечеству предстоит осуществить научный и технический прорыв на пути освоения новых видов энергии, в том числе электроядерной с использованием ускорителей заряженных частиц, и в перспективе термоядерной, что требует объединения усилий, международной кооперации.


Тяньваньская АЭС – самая крупная по единичной мощности энергоблоков среди всех строящихся в настоящее время АЭС в Китае. Ее генплан предусматривает возможность строительства четырех энергоблоков мощностью 1000 МВт каждый. Станция расположена между Пекином и Шанхаем на берегу Желтого моря. Строительные работы на площадке начались в 1998 году. Первый энергоблок АЭС с водо-водяным энергетическим реактором ВВЭР-1000/428 и турбиной К-1000-60/3000, запущенный в мае 2006 года, был сдан в эксплуатацию 2 июня 2007 года, а второй такой же блок – 12 сентября 2007 года. В настоящее время оба энергоблока атомной станции работают стабильно на 100% мощности и снабжают электроэнергией китайскую провинцию Цзянсу. Планируется строительство третьего и четвертого энергоблоков АЭС «Тяньвань».

Поделитесь с друзьями или сохраните для себя:

Загрузка...