Какой привод выбрать: поршневой или газотурбинный. Газовые турбины — надёжные силовые агрегаты современных электростанций Паровая и газовая турбины определение

В автономной генерации - малой энергетике в последнее время значительное внимание уделяется газовым турбинам различной мощности. Электростанции на базе газовых турбин используются как основной или резервный источник электричества и тепловой энергии для объектов производственного или бытового назначения. Газовые турбины в составе электростанций предназначены для эксплуатации в любых климатических условиях России. Области применения газовых турбин практически не ограничены: нефтегазодобывающая промышленность, промышленные предприятия, структуры ЖКХ.

Положительным фактором использования газовых турбин в сфере ЖКХ является то, что содержание вредных выбросов в выхлопных газах NO х и CO находится на уровне 25 и 150 ppm соответственно (у поршневых установок эти значения гораздо больше), что позволяет устанавливать электростанцию рядом с жилой застройкой. Использование газовых турбин в качестве силовых агрегатов электростанций позволяет избежать строительства высоких дымовых труб.

В зависимости от потребностей газовые турбины комплектуется паровыми или водогрейными котлами–утилизаторами, что позволяет получать от электростанции либо пар (низкого, среднего, высокого давления) для технологических нужд, либо горячую воду (ГВС) со стандартными температурными значениями. Можно получать пар и горячую воду одновременно. Мощность тепловой энергии, производимой электростанцией на базе газовых турбин, как правило, в два раза превышает электрическую.

На электростанции с газовыми турбинами в такой конфигурации коэффициент использования топлива возрастает до 90%. Высокая эффективность использования газовых турбин в качестве силовых агрегатов обеспечивается при длительной работе с максимальной электрической нагрузкой. При достаточно высокой мощности газовых турбин существует возможность совокупного использования паровых турбин. Эта мера позволяет существенно повысить эффективность использования электростанции, увеличивая электрический КПД до 53%.

Сколько стоит электростанция на базе газовых турбин? Какова её полная цена? Что входит в стоимость «под ключ»?

Автономная тепловая электростанция на базе газовых турбин имеет массу дополнительного дорогостоящего, но зачастую, просто необходимого оборудования (пример из жизни – реализованный проект). С использованием первоклассного оборудования стоимость электростанции подобного уровня, «под ключ», не превышает 45000 - 55000 рублей за 1 кВт установленной электрической мощности. Конечная цена электростанции на основе газовых турбин зависит от конкретных задач и нужд потребителя. В стоимость входят проектные, строительные и пусконаладочные работы. Сами газовые турбины, как силовые агрегаты, без дополнительного оборудования, в зависимости от компании-производителя и мощности, стоят от 400 до 800 долларов за 1 кВт.

Для получения информации о стоимости строительства электростанции или ТЭС в конкретном Вашем случае, необходимо отправить в нашу компанию заполненный опросный лист . После этого, по истечении 2–3 дней заказчик-клиент получает предварительное технико-коммерческое предложение - ТКП (краткий пример). На основании ТКП заказчиком принимается окончательное решение о строительстве электростанции на базе газовых турбин. Как правило, до принятия решения клиент посещает уже существующий объект, чтобы воочию увидеть современную электростанцию и «потрогать всё руками». Непосредственно на объекте заказчик получает ответы на имеющиеся вопросы.

За основу строительства электростанций на базе газовых турбин часто берется концепция блочно–модульного построения. Блочно-модульное исполнение обеспечивает высокий уровень заводской готовности газотурбинных электростанций и уменьшает сроки строительства объектов энергетики.

Газовые турбины – немного арифметики по себестоимости производимой энергии

Для производства 1 кВт электричества газовые турбины потребляют всего 0,29–0,37 м³/час газового топлива. При сжигании одного кубического метра газа, газовые турбины вырабатывают 3 кВт электричества и 4–6 кВт тепловой энергии. С ценой (усредненной) на природный газ в 2011 году 3 руб. за 1 м³, себестоимость 1 кВт электроэнергии полученной от газовой турбины, равна, приблизительно, 1 рублю. Дополнительно к этому потребитель получает 1,5–2 кВт бесплатной тепловой энергии!

При автономном энергоснабжении от электростанции на основе газовых турбин себестоимость производимой электроэнергии и тепла в 3–4 раза ниже действующих по стране тарифов, и это без учета высокой стоимости подключения к государственным электросетям (60 000 рублей за 1 кВт в Московской области, 2011 год).

Строительство автономных электростанций на основе газовых турбин позволяет получить значительную экономию денежных средств за счет исключения издержек на строительство и эксплуатацию дорогостоящих линий электропередач (ЛЭП), Электростанции на базе газовых турбин могут значительно повысить надежность электрического, теплового снабжения как отдельных предприятий или организаций, так и регионов в целом.
Степень автоматизации электростанции на основе газовых турбин позволяет отказаться от большого количества обслуживающего персонала. Во время эксплуатации газовой электростанции ее работу обеспечивают всего три человека: оператор, дежурный электрик, дежурный механик. При возникновении аварийных ситуаций для обеспечения безопасности персонала, сохранности систем и агрегатов газовой турбины предусмотрены надежные системы защиты.

Атмосферный воздух через воздухозаборник, оборудованный системой фильтров (на схеме не показаны) подается на вход многоступенчатого осевого компрессора. Компрессор сжимает атмосферный воздух, и подает его под высоким давлением в камеру сгорания. В это же время в камеру сгорания турбины через форсунки подается и определенное количество газового топлива. Топливо и воздух перемешиваются и воспламеняются. Топливовоздушная смесь сгорает, выделяя большое количество энергии. Энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струями раскаленного газа лопаток турбины. Часть полученной энергии расходуется на сжатие воздуха в компрессоре турбины. Остальная часть работы передаётся на электрический генератор через ось привода. Эта работа является полезной работой газовой турбины. Продукты сгорания, которые имеют температуру порядка 500-550 °С, выводятся через выхлопной тракт и диффузор турбины, и могут быть далее использованы, например, в теплоутилизаторе, для получения тепловой энергии.

Газовые турбины, как двигатели, имеют самую большую удельную мощность среди ДВС, до 6 кВт/кг.

В качестве топлива газовой турбины могут использоваться: керосин, дизельное топливо, газ .

Одними из преимуществ современных газовых турбин является длительный жизненный цикл - моторесурс (полный до 200 000 часов, до капитального ремонта 25000–60000 часов).

Современные газовые турбины отличаются высокой надежностью. Есть данные о непрерывной работе некоторых агрегатов в течение нескольких лет.

Многие поставщики газовых турбин производят капитальный ремонт оборудования на месте, производя замену отдельных узлов без транспортировки на завод-изготовитель, что существенно снижает временные затраты.

Возможность длительной работы в любом диапазоне мощностей от 0 до 100%, отсутствие водяного охлаждения, работа на двух видах топлива, - все это делает газовые турбины востребованными силовыми агрегатами для современных автономных электростанций.

Наиболее эффективно применение газовых турбин при средних мощностях электростанций, а на мощностях свыше 30 МВт - выбор очевиден.

Силовыми агрегатами - приводами электрических генераторов для автономных малых тепловых электростанций могут быть дизельные, газопоршневые, микротурбинные и газотурбинные двигатели.

О преимуществах тех или иных генерационных установок и технологий написано большое количество дискуссионных и полемических статей. Как правило, в спорах в загоне, в опале часто остаются либо те либо другие. Попробуем разобраться, почему.

Определяющими критериями выбора силовых агрегатов для строительства автономных электростанций являются вопросы расхода топлива, уровень эксплуатационных затрат, а также срок окупаемости оборудования электростанции.

Важными факторами выбора силовых агрегатов являются простота эксплуатации, уровень технического обслуживания и ремонта, а также место выполнения ремонта силовых агрегатов. Эти вопросы связаны, прежде всего, с расходами и проблемами, которые может иметь впоследствии владелец автономной электростанции.

В данной статье у автора нет корыстной цели расставить приоритеты в пользу поршневой или турбинной технологий. Типы силовых установок электростанций правильнее, оптимальнее всего подбирать непосредственно к проекту, исходя из индивидуальных условий и технического задания заказчика.

При выборе силового оборудования для строительства автономной газовой ТЭЦ желательно консультироваться с независимыми специалистами из инжиниринговых компаний уже осуществляющих строительство электростанций «под ключ». Инжиниринговая компания должна иметь реализованные проекты, на которые можно посмотреть и посетить с экскурсией. Следует учитывать и такой фактор, как слабость и неразвитость рынка генерационного оборудования в России, реальные объемы продаж на котором, в сравнении с развитыми странами, невелики и оставляют желать лучшего – это, прежде всего, отображается на объеме и качестве предложений.

Газопоршневые установки против газотурбинных двигателей - эксплуатационные затраты

Действительно ли, что эксплуатационные затраты на мини–ТЭЦ с поршневыми машинами ниже, чем затраты на эксплуатацию электростанции с газовыми турбинами?

Стоимость капитального ремонта газопоршневого двигателя может составлять 30–350% от первоначальной стоимости самого силового агрегата, а не всей электростанции - при капремонте осуществляется замена поршневой группы. Ремонт газопоршневых установок можно производить на месте без сложного диагностического оборудования один раз в 7-8 лет.

Цена ремонта газотурбинной установки составляет 30–50% от начальных вложений. Как видите, затраты примерно равны. Реальные, честные цены на сами газотурбинные и поршневые агрегаты сопоставимой мощности и качества также схожи.

Капитальный ремонт газотурбинной установки ввиду его сложности на месте не производится. Поставщик должен увезти отработанный блок и привезти сменный газотурбинный блок. Старый блок может быть восстановлен только в заводских условиях.

Всегда следует учитывать соблюдение графика регламентных работ, характер нагрузок и режимы эксплуатации электростанции, вне зависимости от типа установленных силовых агрегатов.

Вопрос, который часто муссируется, о привередливости турбины к условиям эксплуатации, связан с устаревшей информацией сорокалетней давности. Тогда «на земле», в приводе электростанций, использовались авиационные турбины, «снятые с крыла» самолета. Такие турбины с минимальными изменениями приспосабливались к работе в качестве основных силовых агрегатов для электростанций.

Сегодня на современных автономных электростанциях применяются турбины промышленного, индустриального исполнения, рассчитанные на непрерывную работу с различными нагрузками.

Нижний предел минимальной электрической нагрузки, официально заявляемый заводами-производителями для индустриальных турбин, составляет 3–5%, но в таком режиме расход по топливу возрастает на 40%. Максимальная нагрузка газотурбинной установки, в ограниченных временных интервалах может достигать 110-120%.

Современные газопоршневые установки обладают феноменальной экономичностью, базирующейся на высоком уровне электрического КПД. «Проблемы», связанные с работой газопоршневых установок на малых нагрузках, решаются положительно еще на стадии проектирования. Проектирование должно быть качественным.

Cоблюдение рекомендованного заводом-изготовителем режима эксплуатации продлит жизнь деталям двигателя, сэкономив таким образом деньги владельцу автономной электростанции. Иногда, чтобы вывести газопоршневые машины в номинальный режим при частичных нагрузках, в проект тепловой схемы станции включаются один-два электрических котла, которые и позволяют обеспечить желаемые 50% нагрузки.

Для электростанций на базе газопоршневых установок и газовых турбин важным является соблюдение правила N+1 - количество действующих агрегатов плюс еще один - для резерва. “N+1” - это удобное, рациональное для эксплуатирующего персонала количество установок. Это обусловлено тем, что для силовых установок любых типов и видов надо проводить регламентные и ремонтные работы.

Предприятию, подключенному к сети, можно смонтировать только одну установку и пользоваться собственной электроэнергией по себестоимости, а во время техобслуживания питаться от общей электросети, платя по счетчику. Это дешевле, чем «+1», но, к сожалению, не всегда выполнимо. Связано это, как правило, с отсутствием электросети вообще, либо с неимоверной дороговизной технических условий на само подключение.

Недобросовестные дилеры газопоршневых установок и газовых турбин до продажи оборудования покупателю, как правило, предоставляют только проспекты - коммерческую литературу общего плана и крайне редко - точные сведения о полных эксплуатационных расходах и производимых технических регламентах.

На мощных газопоршневых установках масло менять не требуется. При постоянной работе оно просто вырабатывается, не успевая стареть. Масло на таких установках постоянно доливается. Подобные режимы эксплуатации предусмотрены особой конструкцией мощных газопоршневых двигателей и рекомендованы заводом-изготовителем.

Угар моторного масла составляет 0,25–0,45 грамма на один произведенный киловатт в час. Угар всегда выше при снижении нагрузки. Как правило, в комплект газопоршневого двигателя входит специальный резервуар для непрерывного долива масла, и мини-лаборатория для проверки его качества и определения срока замены.

Соответственно, подлежат замене и масляные фильтры или картриджи в них.

Так как моторное масло все же выгорает, поршневые агрегаты имеют чуть более высокий уровень вредных выбросов в атмосферу, нежели газотурбинные установки. Но так как газ сгорает полностью и является одним из самых чистых видов топлива, то говорить о серьезных загрязнениях атмосферы - только «шашки тупить». Пару старых венгерских автобусов «Икарус» наносят экологии куда более серьезный вред. Для соответствия требованиям по экологии, при использовании поршневых машин, надо строить более высокие дымовые трубы, с учетом уже имеющегося уровня ПДК в окружающей среде.

Отработанное масло газопоршневых установок нельзя просто вылить на землю - оно требует утилизации - это «расходы» для владельцев электростанции. Но на этом можно и заработать - отработанное моторное масло покупают специализированные организации.

Многие из нас используют моторное масло в поршневых двигателях автомобилей. Если двигатель исправен, правильно эксплуатируется и заправляется нормальным топливом, то никаких финансовых катаклизмов, связанных с его расходом, не происходит.

То же самое и на поршневых электростанциях: - расхода моторного масла бояться не нужно, оно вас не разорит, при нормальной эксплуатации современных качественных газопоршневых установок затраты по этой статье составляют всего 2-3 (!) копейки на 1 кВт выработанной электроэнергии.

В современных газотурбинных установках масло используется только в редукторе. Его объем можно считать незначительным. Замена редукторного масла в ГТУ производится в среднем 1 раз в 3-5 лет, а его долив не требуется.

Для проведения сервиса в полном объеме в комплект мощной газопоршневой установки должна входить кран–балка. При помощи кран–балки снимают тяжелые детали поршневых двигателей. Использование кран–балки требует высоких потолков помещения для машинных залов поршневой электростанции. Для ремонта газопоршневых установок малой и средней мощности можно обходиться более простыми подъемными механизмами.

Газопоршневые электростанции при поставке могут комплектоваться различными ремонтными инструментами и приспособлениями. Его наличие предполагает, что даже все ответственные операции можно производить силами квалифицированного персонала на месте. Фактически все ремонтные работы с газовыми турбинами можно проводить либо на заводе-изготовителе, либо при непосредственной помощи заводских специалистов.

Один раз в 3–4 месяца требуется замена свечей зажигания. Замена свечей - это всего 1-2 (!) копейки в себестоимости 1 кВт/ч собственной электроэнергии.

Поршневые агрегаты, в отличие от газотурбинных установок, имеют жидкостное охлаждение, соответственно персоналу автономной электростанции необходимо постоянно следить за уровнем охлаждающей жидкости и осуществлять периодическую замену, а если это вода, то требуется обязательно осуществлять её химическую подготовку.

Вышеперечисленные особенности эксплуатации поршневых агрегатов отсутствуют у газотурбинных установок. В газотурбинных установках не используется такие расходные материалы и компоненты, как:

  • моторное масло,
  • свечи зажигания,
  • масляные фильтры,
  • охлаждающая жидкость,
  • наборы высоковольтных проводов.

Но ГТУ на месте не отремонтируешь и гораздо больший расход газа невозможно сопоставлять с затратами на эксплуатацию и расходные материалы для поршневых установок.

Что выбрать? Газопоршневые или газотурбинные установки?

Как соотносятся мощность силовых агрегатов электростанций и температура окружающей среды?

При значительном повышении температуры окружающей среды мощность газотурбинной установки падает. Но при понижении температуры электрическая мощность газотурбинной установки наоборот, растет. Параметры электрической мощности, по существующим стандартам ISO, измеряются при t +15 °C.

Иногда важным моментом является и то, что газотурбинная установка способна отдать в 1,5 раза больше бесплатной тепловой энергии, нежели поршневой агрегат аналогичной мощности. При использовании мощной (от 50 МВт) автономной ТЭЦ в коммунальном хозяйстве, например, это может иметь определяющее значение при выборе типа силовых агрегатов, особенно при большом и равномерном потреблении именно тепловой энергии.

Наоборот, там где тепло не требуется в больших количествах, а нужен акцент именно на производстве электрической энергии, будет экономически целесообразнее использование газопоршневых установок.

Высокая температура на выходе газотурбинных установок позволяет использовать в составе электростанции паровую турбину. Это оборудование бывает востребованным, если потребителю необходимо получить максимальное количество электрической энергии при одном и том же объеме потраченного газового топлива, и таким образом достичь высокого электрического КПД - до 59%. Энергокомплекс такой конфигурации сложнее в эксплуатации и стоит он на 30-40% дороже обычного.

Электростанции, имеющие в своей структуре паровые турбины, как правило, рассчитаны на довольно большую мощность - от 50 МВт и выше.

Поговорим о самом главном: газопоршневые установки против газотурбинных силовых агрегатов - КПД

КПД силовой установки более чем актуален - ведь он влияет на расход топлива. Средний удельный расход газового топлива на 1 выработанный кВт/час значительно меньше у газопоршневой установки, причем при любом режиме нагрузки (хотя длительные нагрузки менее 25% противопоказаны для поршневых двигателей).

Электрический КПД поршневых машин составляет 40–44%, а газовых турбин - 23–33% (в парогазовом цикле турбина способна выдать КПД достигающий 59%).

Парогазовый цикл применяется при высокой мощности электростанций - от 50-70 МВт.

Если Вам надо изготовить локомотив, самолет или морское судно, то можно считать одним из определяющих показателей именно коэффициент полезного действия (КПД) силовой установки. Тепло, которое получается в процессе работы двигателя локомотива, самолета (или судна) не используется и выбрасывается в атмосферу.

Но мы строим не локомотив, а электростанцию и при выборе типа силовых агрегатов для автономной электростанции подход несколько иной - здесь необходимо говорить о полноте использования сгораемого топлива - коэффициенте использования топлива (КИТ).

Сгорая, топливо производит основную работу - вращает генератор электростанции. Вся остальная энергия сгорания топлива - это тепло, которое можно и нужно использовать. В этом случае так называемый, «общий КПД», а вернее коэффициент использования топлива (КИТ) электростанции будет порядка 80-90%.

Если потребитель рассчитывает использовать тепловую энергию автономной электростанции в полном объеме, что обычно маловероятно, то коэффициент полезного действия (КПД) автономной электростанции не имеет практического значения.

При снижении нагрузки до 50% электрический КПД газовой турбины снижается.

Кроме того, турбинам требуется высокое входное давление газа, а для этого обязательно устанавливают компрессоры (поршневые) и они также повышают расход топлива.
Сравнение газотурбинных установок и газопоршневых двигателей в составе мини–ТЭЦ показывает, что установка газовых турбин целесообразна на объектах, которые имеют равномерные электрические и тепловые потребности при мощности свыше 30-40 МВт.

Из вышесказанного следует, что электрический КПД силовых агрегатов разных типов имеет прямую проекцию на расход топлива.

Газопоршневые агрегаты расходуют на четверть, а то и на треть меньше топлива, чем газотурбинные установки – это основная статья расходов!

Соответственно, при схожей или равной стоимости самого оборудования более дешёвая электрическая энергия получается на газопоршневых установках. Газ - это основная расходная статья при эксплуатации автономной электростанции!

Газопоршневые установки против газотурбинных двигателей - входное давление газа

Всегда ли необходимо наличие газопровода высокого давления, в случае применения газовых турбин?

Для всех типов современных силовых агрегатов электростанций давление подводимого газа не имеет практического значения, так как в комплекте газотурбинной установки всегда имеется газовый компрессор, входящий в стоимость энергокомплекса.

Компрессор обеспечивает требуемые рабочие характеристики газового топлива по давлению. Современные компрессоры являются чрезвычайно надежными и малообслуживаемыми агрегатами. В мире современных технологий, как для газопоршневых двигателей, так и для газовых турбин важно лишь наличие должного объема газового топлива для обеспечения нормальной работы автономной электростанции.

Однако не следует забывать, что дожимной компрессор также требует немалой энергии, расходных материалов и обслуживания . Парадоксально, но для мощных турбин часто используются именно поршневые компрессоры.

Газопоршневые двигатели против газотурбинных агрегатов - двухтопливные установки

Часто пишут и говорят, что двухтопливные установки могут быть только поршневыми. Правда ли это?

Это не соответствует действительности. Все известные фирмы-производители газовых турбин имеют в своей гамме двухтопливные агрегаты. Основной особенностью работы двухтопливной установки является ее возможность работы, как на природном газе, так и на дизельном топливе. Благодаря применению в двухтопливной установке двух видов топлива, можно отметить ряд ее преимуществ по сравнению с монотопливными установками:

  • при отсутствии природного газа установка автоматически переходит на работу на дизельном топливе;
  • во время переходных процессов установка автоматически переходит на работу на дизельном топливе.

При выходе на рабочий режим осуществляется обратный процесс перехода на работу на природном газе и дизельном топливе;
Не стоит забывать и о том факте, что первые турбины изначально проектировались для работы именно на жидком топливе - керосине.

Двухтопливные установки имеют все же ограниченное применение и не нужны для большинства автономных ТЭЦ - для этого есть более простые инженерные решения.

Газопоршневые установки против газотурбинных - количество пусков

Каким может быть количество пусков газопоршневых агрегатов?

Количество пусков: газопоршневой двигатель может запускаться и останавливаться неограниченное число раз, и это не отражается на его моторесурсе. Но частые пуски– остановки газопоршневых агрегатов, с потерей питания собственных нужд, могут повлечь за собой износ наиболее нагруженных узлов (подшипников турбонагнетателей, клапанов и т.д.).

Газотурбинную установку из-за резких изменений термических напряжений, возникающих в наиболее ответственных узлах и деталях горячего тракта ГТУ при быстрых пусках агрегата из холодного состояния, предпочтительнее использовать для постоянной, непрерывной работы.

Газопоршневые двигатели электростанций против газотурбинных установок - ресурс до капитального ремонта

Каким может быть ресурс установки до капитального ремонта?

Ресурс до капитального ремонта составляет у газовой турбины 40000–60000 рабочих часов. При правильной эксплуатации и своевременном проведении регламентных работ у газопоршневого двигателя этот показатель также равен 40000–60000 рабочих часов. Однако бывают иные ситуации, когда капремонт наступает гораздо раньше.

Газопоршневые установки против газотурбинных двигателей - капитальные вложения и цены

Какие потребуются капитальные вложения (инвестиции) в строительство электростанции? Какова стоимость строительства автономного энергокомплекса под ключ?

Как показывают расчёты, капиталовложения (доллар/кВт) в строительство тепловой электростанции с газопоршневыми двигателями приблизительно равны с газотурбинными установками. Финская тепловая электростанция WARTSILA мощностью 9 МВт обойдется заказчику ориентировочно в 14 миллионов евро. Аналогичная газотурбинная тепловая электростанция на базе первоклассных агрегатов полностью «под ключ» будет стоить 15,3 миллионов долларов.

Газопоршневые моторы против газотурбинных установок - экология

Каким образом выполняются требования по экологии?

Надо отметить, что газопоршневые установки уступают газотурбинным агрегатам по уровню выбросов NO x . Так как моторное масло выгорает, поршневые агрегаты имеют уровень вредных выбросов в атмосферу чуть больший, чем у газотурбинных агрегатов.

Но это не критично: в СЭС запрашивается уровень фона по ПДК в месте расположения мини-ТЭЦ, После этого делается расчёт рассеивания с тем, чтобы «добавка» вредных веществ от мини-ТЭЦ добавленная к фону не привела к превышению ПДК. Путём нескольких итераций подбирается минимальная высота дымовой трубы, при которой соблюдаются требования СанПиН. Добавка от станции 16 МВт по выбросам NO x не столь значительна: при высоте дымовой трубы 30 м - 0.2 ПДК, при 50 м - 0.1 ПДК.

Уровень вредных выбросов от большинства современных газотурбинных установок не превышает значение 20-30 ppm и в каких-то проектах это может иметь определенное значение.

Поршневые установки при работе имеют вибрации и низкочастотный шум. Доведение шума до стандартных значений возможно, просто необходимы соответствующие инженерные решения. Помимо расчёта рассеивания при разработке раздела проектной документации «Охрана окружающей среды» делается акустический расчёт и проверяется: удовлетворяют ли выбранные проектные решения и применяемые материалы требованиям СанПиН с точки зрения шума.

Любое оборудование излучает шум в определенном спектре частот. Газотурбинные установки сия чаша не миновала.

Газопоршневые установки против газотурбинных двигателей - выводы

При линейных нагрузках и соблюдении правила N+1 применение газопоршневых двигателей в качестве основного источника энергоснабжения возможно. В составе такой электростанции необходимы резервные агрегаты и емкости для хранения второго вида топлива - дизельного.

В диапазоне мощности до 40-50 МВт использование поршневых моторов на мини–ТЭЦ считается абсолютно оправданным.

В случае использования газопоршневых агрегатов потребителю можно полностью уйти от внешнего электроснабжения, но только при обдуманном и взвешенном подходе.

Поршневые установки так же можно применять и в качестве резервных или аварийных источников электроэнергии.

Некая альтернатива поршневым установкам – газовые микротурбины. Правда цены на микротурбины сильно «кусаются» и составляют ~ $2500–4000 за 1 кВт установленной мощности!

Сравнение газотурбинных установок и газопоршневых двигателей в составе мини–ТЭЦ показывает, что установка газовых турбин возможна на любых объектах, которые имеют электрические нагрузки более 14-15 МВт, но из-за высокого расхода газа турбины рекомендуются для электростанций гораздо большей мощности – 50-70 МВт.

Для многих современных генерационных установок 200.000 моточасов эксплуатации не является критической величиной и при соблюдении графика планового технического обслуживания и поэтапной замены частей турбины, подверженных износу: подшипники, инжекторы, различное вспомогательное оборудование (насосы, вентиляторы) дальнейшая эксплуатация газотурбинной установки остается экономически целесообразной. Качественные газопоршневые установки сегодня так же успешно преодолевают 200.000 моточасов эксплуатации.

Это подтверждается современной практикой эксплуатации газотурбинных/газопоршневых установок во всем мире.

При выборе силовых агрегатов автономной электростанции необходимы консультации специалистов!

Советы специалистов, надзор необходимы и при строительстве автономных электростанций. Для решения задачи нужна инжиниринговая компания с опытом работы и реализованными проектами.

Инжиниринг позволяет компетентно, не предвзято и объективно определиться с выбором основного и вспомогательного оборудования для подбора оптимальной конфигурации - комплектации вашей будущей электростанции.

Квалифицированный инжиниринг позволяет сберечь значительные денежные средства заказчика, а это 10–40% от общей суммы затрат. Инжиниринг от профессионалов в сфере электроэнергетики, позволяет избежать дорогостоящих ошибок в проектировании и в выборе поставщиков оборудования.

В статье рассказывается о том, как вычисляется КПД простейшей ГТУ, даны таблицы разных ГТУ и ПГУ для сравнения их КПД и других характеристик.

В области промышленного использования газотурбинных и парогазовых технологий Россия значительно отстала от пере­довых стран мира.

Мировые лидеры в производстве газовых и парогазовых энергоустановок большой мощности: GE, Siemens Wistinghouse, ABB - достигли значений единичной мощности газотурбинных установок 280-320 МВт и КПД свыше 40 %, с утилизационной паросиловой надстройкой в парогазовом цикле (называемом также бинарным) - мощности 430-480 МВт при КПД до 60 %. Если есть вопросы по надежности ПГУ - то читайте статью.

Эти впечатляющие цифры служат в качестве ори­ентиров при определении путей развития энергомашиностро­ения России.

Как определяется КПД ГТУ

Приведем пару простых формул, чтобы показать, что такое КПД газотурбинной установки:

Внутренняя мощность турбины:

  • Nт = Gух * Lт, где Lт – работа турбины, Gух – расход уходящих газов;

Внутренняя мощность ГТУ:

  • Ni гту = Nт – Nк, где Nк – внутренняя мощность воздушного компрессора;

Эффективная мощность ГТУ:

  • Nэф = Ni гту * КПД мех, КПД мех – КПД связанный с механическими потерями в подшипниках, можно принимать 0,99

Электрическая мощность:

  • Nэл = Ne * КПД эг, где КПД эг – КПД связанный с потерями в электрическом генераторе, можно принять 0,985

Располагаемая теплота топлива:

  • Q расп = Gтоп * Qрн, где Gтоп – расход топлива, Qрн – низшая рабочая теплота сгорания топлива

Абсолютный электрический КПД газотурбинной установки:

  • КПДэ = Nэл/Q расп

КПД ПГУ выше, чем КПД ГТУ так как в Парогазовой установке используется тепло уходящих газов ГТУ. За газовой турбиной устанавливается котел-утилизатор в котором тепло от уходящих газов ГТУ передается рабочему телу (питательной воде) , сгенерированный пар отправляется в паровую турбину для генерации электроэнергии и тепла.

Читайте также: Как выбрать газотурбинную установку для станции с ПГУ

КПД ПГУ обычно представляют соотношением:

  • КПД пгу = КПД гту*B+(1-КПД гту*B)*КПД псу

B – степень бинарности цикла

КПД псу – КПД паросиловой установки

  • B = Qкс/(Qкс+Qку)

Qкс – теплота топлива, сжигаемого в камере сгорания газовой турбины

Qку – теплота дополнительного топлива сжигаемого в котле-утилизаторе

При этом отмечают, что если Qку = 0, то B = 1, т. е. установка является полностью бинар­ной.

Влияние степени бинарности на КПД ПГУ

B КПД гту КПД псу КПД пгу
1 0,32 0,3 0,524
1 0,36 0,32 0,565
1 0,36 0,36 0,590
1 0,38 0,38 0,612
0,3 0,32 0,41 0,47
0,4 0,32 0,41 0,486
0,3 0,36 0,41 0,474
0,4 0,36 0,41 0,495
0,3 0,36 0,45 0,51
0,4 0,36 0,45 0,529

Давайте приведем последовательно таблицы с характеристиками эффективности ГТУ и вслед за ними показатели ПГУ с этими газовыми машинами, и сравним КПД отдельной ГТУ и КПД ПГУ.

Характеристики современных мощных ГТУ

Газовые турбины фирмы ABB

Характеристика Модель ГТУ
GT26ГТУ с промперегревом GT24ГТУ с промперегревом
Мощность ISO МВт 265 183
КПД % 38,5 38,3
30 30
562 391
1260 1260
610 610
50 50

Парогазовые установки с газовыми турбинами ABB

Газовые турбины фирмы GE

Характеристика Модель ГТУ
MS7001FA MS9001FA MS7001G MS9001G
Мощность ISO МВт 159 226,5 240 282
КПД % 35,9 35,7 39,5 39,5
Степень повышения давления компрессора 14,7 14,7 23,2 23,2
Расход рабочего тела на выхлопе ГТУ кг/с 418 602 558 685
Начальная температура, перед рабочими лопатками 1 ст. С 1288 1288 1427 1427
Температура рабочего тела на выхлопе С 589 589 572 583
Частота вращения генератора 1/с 60 50 60 50

Читайте также: Зачем строить Парогазовые ТЭЦ? В чем преимущества парогазовых установок.

Парогазовые установки с газовыми турбинами GE

Характеристика Модель ГТУ
MS7001FA MS9001FA MS7001G MS9001G
Состав газотурбинной части ПГУ 1хMS7001FA 1хMS9001FA 1хMS9001G 1хMS9001H
Модель ПГУ S107FA S109FA S109G S109H
Мощность ПГУ МВт 259.7 376.2 420.0 480.0
КПД ПГУ % 55.9 56.3 58.0 60.0

Газовые турбины фирмы Siemens

Характеристика Модель ГТУ
V64.3A V84.3A V94.3A
Мощность ISO МВт 70 170 240
КПД % 36,8 38 38
Степень повышения давления компрессора 16,6 16,6 16,6
Расход рабочего тела на выхлопе ГТУ кг/с 194 454 640
Начальная температура, перед рабочими лопатками 1 ст. С 1325 1325 1325
Температура рабочего тела на выхлопе С 565 562 562
Частота вращения генератора 1/с 50/60 60 50

Парогазовые установки с газовыми турбинами Siemens

Газовые турбины Westinghouse-Mitsubishi-Fiat

Характеристика Модель ГТУ
501F 501G 701F 701G1 701G2
Мощность ISO МВт 167 235,2 251,1 271 308
КПД % 36,1 39 37 38,7 39
Степень повышения давления компрессора 14 19,2 16,2 19 21
Расход рабочего тела на выхлопе ГТУ кг/с 449,4 553,4 658,9 645 741
Начальная температура, перед рабочими лопатками 1 ст. С 1260 1427 1260 1427 1427
Температура рабочего тела на выхлопе С 596 590 569 588 574
Частота вращения генератора 1/с 60 60 50 50 50

§ 45. Турбинные установки

Судовые турбины служат для преобразования тепловой энергии пара или газа в механическую работу. Метод превращения энергии в турбине не зависит от рабочего тела, которое используется в турбине. Поэтому рабочие процессы, протекающие в паровых турбинах, не имеют существенного отличия от рабочих процессов, протекающих в газовых турбинах, а основные принципы проектирования паровых и газовых турбин одинаковы.

Свежий пар или газ, поступая в сопло, являющееся направляющим аппаратом, расширяется, потенциальная энергия превращается в кинетическую, и пар или газ приобретают значительную скорость. По выходе из сопла пар или газ попадает в каналы рабочих лопаток, насаженных на обод турбинного диска, сидящего на валу турбины. Рабочее тело давит на изогнутые поверхности рабочих лопаток, заставляя диск с валом вращаться. Совокупность рассматриваемых таких направляющих аппаратов (сопел) и рабочих лопаток на турбинном диске называется ступенью турбины . Турбины, имеющие лишь одну ступень, называются одноступенчатыми в отличие от многоступенчатых турбин.

Турбины по принципу работы рабочего тела (пара или газа) разделяют на две основные группы. Турбины, в которых расширение, пара или газа происходит только в неподвижных направляющих аппаратах, а на рабочих лопатках используется лишь их кинетическая энергия, называются активными . Турбины, в которых расширение пара или газа происходит также и при движении рабочего тела в каналах рабочих лопаток, называются реактивными. Турбины вращаются только в одну сторону и являются нереверсивными, т. е. они не могут изменять направление вращения. Поэтому на одном валу с главными турбинами переднего хода обычно предусматривают турбины заднего хода. Мощность судовых турбин заднего хода не превышает 40-50% мощности турбин переднего хода. Поскольку эти турбины не должны обеспечивать высокую экономичность в работе, число ступеней в них невелико.

Судовые паротурбинные установки, работающие при начальном давлении пара 40-50 атм и температуре пара 450-480° С, имеют экономический к. п. д. 24-27%.

Экономическим (эффективным) к. п. д. называется отношение тепла, превращенного в полезную работу, к теплу, развивающемуся при полном сгорании затраченного топлива. Эффективный к. п. д. характеризует экономичность двигателя. При повышении давления до 70-80 атм и температуры пара до 500- 550° С экономический к. п. д. возрастает до 29-31%. Дальнейшее повышение начального давления пара и совершенствование установок позволит увеличить к. п. д. судовой паротурбинной установки примерно до 35%.

Работа над судовыми газотурбинными установками (ГТУ) по существу носит еще экспериментальный характер, так как все еще не создано их серийной конструкции.

Газовая турбина отличается от паровой тем, что рабочим телом ее является не пар из котлов, а газы, образующиеся при сгорании топлива в специальных камерах.

Устройство и работа газовой турбины аналогичны устройству и работе паровой турбины. Они также бывают активные или реактивные, однокорпусные, многокорпусные и т. п. Отличаются газовые турбины от паровых более высокими температурными нагрузками: температура горячих газов бывает в пределах 700-800° С. Разница в температурном режиме уменьшает ресурсы времени работы газовых турбин.

В зависимости от способа сжатия воздуха и образования горячих газов различают газотурбинные установки с камерой горения и ГТУ со свободно-поршневыми генераторами газа (СПГГ). Отрицательным качеством ГТУ является большая потеря тепла при отводе отработавших газов.

Методом повышения экономичности ГТУ является использование тепла отработавших газов для подогрева воздуха, поступающего в камеру сгорания, так называемая регенерация.

Применение регенерации с одновременным двухступенчатым сжатием воздуха повышает эффективный к. п. д. установки до 28-30%. Такие ГТУ находят применение в качестве судовых силовых установок.

В судовой газотурбинной установке с камерой горения (рис.69) атмосферный воздух засасывается, сжимается компрессором низкого давления 1, располагаемым на одном валу с газовой турбиной 5, и направляется в холодильник 2, охлаждаемый забортной водой. Охлажденный воздух поступает в компрессор высокого давления 3, где снова сжимается до более высокого давления, после чего подается в регенератор 4, откуда подогретый отработавшими газами идет в камеру горения 6, где сгорает подающееся туда топливо. Продукты сгорания расширяются в газовой турбине 5 и через регенератор, отдав в нем часть тепла воздуху, выходят в атмосферу или используются в утилизационном котле.

Рис. 69. Схема газотурбинной установки с регенерацией и двухступенчатым сжатием воздуха.


Энергия, развиваемая в газовой турбине, не полностью используется по основному назначению, а частично расходуется на привод компрессоров. Для запуска газовой турбины ее необходимо раскрутить пусковыми электромоторами.

Газотурбинная установка со свободно-поршневым генератором газа (СПГГ) представляет собой активную или реактивную турбину и дизельный цилиндр, в котором происходит сжигание топлива. Комбинированная газотурбинная установка с СПГГ показана на рис. 70.

Цилиндр СПГГ 1 имеет два рабочих поршня 2 на одних штоках с поршнями компрессоров 3. При сгорании смеси воздуха с топливом, подаваемым через форсунку 11, газы в цилиндре расширяются, раздвигая поршни. В полостях 6 компрессорных цилиндров 5 создается разряжение и через клапаны 7 атмосферный воздух засасывается. Одновременно в полости 4 компрессорных цилиндров воздух сжимается и рабочие поршни возвращаются в исходное положение.

При расхождении поршней в цилиндре открываются сначала выхлопные окна 9, а затем продуваются окна 10. Отработанные газы через выхлопные окна поступают в ресивер 8 и оттуда - в газовую турбину 12.

При обратном ходе компрессорных поршней выхлопные и продувочные окна закрываются, воздух из полости 6 нагнетается в продувочный ресивер, а воздух в рабочем цилиндре сжимается. В конце сжатия температура воздуха поднимается и впрыснутое в этот момент форсункой топливо воспламеняется. Начинается новый цикл работы свободно-поршневого генератора газа.

Эффективный к. п. д. такой комбинированной газотурбинной установки с СПГГ приближается к 40%, что делает выгодной их установку на судах. Газотурбинные установки с СПГГ перспективны и будут широко использоваться на судах в качестве главных двигателей.


Рис. 70. Схема газотурбинной установки со свободно-поршневым генератором газа (СПГГ).


Судовые ядерные установки служат для получения тепловой энергии в результате деления ядер расщепляющихся элементов, которое происходит в аппаратах, называемых ядерными реакторами. Суда с такими установками имеют практически неограниченную дальность плавания.

Энергия, выделяемая реакцией деления ядер при использовании 1 кг урана, примерно равна энергии, получаемой при сжигании 1400 т мазута. Суточный расход ядерного топлива на транспортных судах исчисляется лишь десятками граммов. Срок смены тепловыделяющих элементов в судовых реакторах равен двумтрем годам. Несмотря на большой вес ядерной установки, вызванный большим весом биологической защиты, полезная грузоподъемность судов с ядерными установками, значительно больше грузоподъемности судов равных размерений, имеющих общепринятые силовые установки. Увеличение грузоподъемности на этих судах объясняется отсутствием на них обычного топлива.

Для повышения скорости движения судов применение установок, работающих на ядерной энергии, является экономически выгодным, позволяет повысить мощность силовых установок без резкого увеличения их веса. Решающим преимуществом судовых ядерных установок является отсутствие потребности в воздухе при их работе. Эта особенность позволяет решить проблему длительного движения судов под водой. Как известно, суда, плавая под водой, в однородной среде, встречают меньшее сопротивление, чем надводные суда, и, следовательно, при равных мощностях двигателей могут развивать большие скорости. Подводные транспорты большого водоизмещения могут быть значительно выгоднее в эксплуатации, чем надводные суда того же водоизмещения.

В качестве ядерного топлива для современных судовых реакторов применяется искусственно обогащенный уран с содержанием изотопа U 235 в количестве 3-5%.

Та часть реактора, в которой совершается цепная реакция, называется активной зоной. В эту зону вводят особое вещество - замедлитель нейтронов, замедляющее движение нейтронов до скорости теплового движения. В качестве замедлителя применяется простая вода (Н 2 0), тяжелая вода (D 2 0), бериллий или графит.

По типу активной зоны реакторы делят на гомогенные и гетерогенные. В гомогенных реакторах ядерное топливо и замедлитель представляют собой однородную смесь. В гетерогенных реакторах ядерное топливо располагается в замедлителе в виде стержней или пластин, называемых тепловыделяющими элементами. В судовых ядерных силовых установках применяется единственный тип - гетерогенные реакторы.

При совершении ядерной реакции около 80% энергии превращается в тепло, а 20% выделяется в виде излучений (а, в и у), а- и в-излучения особенной опасности не представляют. Но вот у-излучения и нейтронные излучения, обладающие большой проникающей способностью, вызывают вторичное излучение во многих материалах. При этом излучении в организме человека возникают тяжелые заболевания. Для предотвращения такого излучения ядерные силовые установки должны иметь надежную защиту, называемую биологической. Биологическую защиту обычно выполняют из металла, воды и бетона, она имеет значительные габариты и вес.

Наиболее мощной и технически совершенной судовой ядерной силовой установкой на гражданских судах является силовая установка на ледоколе «Ленин» - самом мощном ледоколе в мире.

Мощность четырех его турбин равна 44 000 л. с.

Главная энергетическая установка ледокола «Ленин» выполнена по следующей схеме (рис. 71). На ледоколе установлены три реактора 1 со стабилизаторами давления 2 в первом контуре. Замедлителем и теплоносителем служит обычная вода под давлением около 200 атм. Вода реактора подается в парогенераторы 3 при температуре около 325° С циркуляционными электронасосами 4. В парогенераторах получается пар второго контура под давлением 29 атм и с температурой 310° С, который приводит в действие четыре паровых турбогенератора 5. Отработавший пар проходит через конденсаторы 6 в виде конденсата и используется снова, совершая работу по замкнутому циклу.

Реакторы, парогенераторы и насосы активной зоны окружены биологической защитой из слоя воды и стальных плит толщиной 300-420 мм.



Судовые турбореактивные двигатели применяются на судах на подводных крыльях или на судах специального назначения. Часто встречающаяся схема турбореактивного двигателя приведена на рис. 72.


Рис. 71. Схема энергетической установки ледокола «Ленин»


При движении двигателя влево (по стрелке А) воздух поступает в его корпус и сжимается турбокомпрессором 1. Сжатый воздух подается в камеру горения 2, в которой сгорает поступающее одновременно топливо. Из камеры 2 продукты сгорания направляются в газовую турбину 3. В турбине газы частично расширяются, совершая этим работу для привода турбокомпрессора. Дальнейшее расширение газа происходит в сопле 4, откуда он с большой скоростью вырывается в атмосферу. Реакция вытекающей струи обеспечивает движение судна.

Парогазовая турбинная установка, работающая по циклу Вальтера, была применена на немецких подводных лодках во второй мировой войне с целью увеличения их скорости в подводном положении. Лодка с такой установкой могла в течение 5-6 ч развивать большие скорости подводного хода, доходящие до 22-25 узл.

Окислителем в этом цикле служила перекись водорода высокой (80%) концентраций, которая в присутствии катализатора разлагается в специальной камере на водяной пар и кислород, выделяя значительное количество тепла. В камере горения в кислороде сжигалось жидкое топливо с одновременным впрыскиванием туда же пресной воды. Энергия получающейся парогазовой смеси с высоким давлением и высокой температурой использовалась в парогазовой турбине. Отработавшая парогазовая смесь охлаждалась в конденсаторе, где водяной пар превращался в воду и поступал опять в систему, питательной воды, а углекислота откачивалась за борт.

Основными недостатками этих установок являлась малая дальность плавания лодок максимальными ходами, повышенная пожароопасность из-за наличия на лодке большого количества перекиси водорода, зависимость их нормальной работы от глубины погружения и высокая стоимость как самой установки, так и ее эксплуатации.

В Англии в послевоенные годы была построена подводная лодка «Эксилорер» с силовой установкой такого типа. На проведенных испытаниях было определено, что стоимость ее одного ходового часа эквивалентна стоимости 12,5 кг золота.

Вперед
Оглавление
Назад

Тепловая турбина постоянного действия, в которой тепловая энергия сжатого и нагретого газа (обычно продуктов сгорания топлива) преобразуется в механическую вращательную работу на валу ; является конструктивным элементом газотурбинного двигателя.

Нагревание сжатого газа, как правило, происходит в камере сгорания. Также можно осуществлять нагрев в ядер-ном реакторе и др. Впервые газовые турбины появились в конце XIX в. в качестве газотурбинного двигателя и по конструктивному выполнению приближались к паровой турбине. Газовая турбина конструктивно представляет собой целый ряд упорядоченно расположенных неподвижных лопаточных венцов аппарата сопла и вращающихся венцов рабочего колеса, которые в результате образуют проточную часть. Ступень турбины представляет собой сопловой аппарат, совмещенный с рабочим колесом . Ступень состоит из статора, в который входят стационарные детали (корпус, сопловые лопатки, бандажные кольца), и ротора , представляющего собой совокупность вращающихся частей (таких, как рабочие лопатки, диски, вал).

Классификация газовой турбины осуществляется по многим конструктивным особенностям: по направлению газового потока, количеству ступеней, способу использования перепада тепла и способу подвода газа к рабочему колесу. По направлению газового потока можно различить газовые турбины осевые (самые распространенные) и радиальные, а также диагональные и тангенциальные. В осевых газовых турбинах поток в меридиональном сечении транспортируется в основном вдоль всей оси турбины; в радиальных турбинах, наоборот, перпендикулярно оси. Радиальные турбины подразделяются на центростремительные и центробежные. В диагональной турбине газ течет под некоторым углом к оси вращения турбины. У рабочего колеса тангенциальной турбины отсутствуют лопатки, такие турбины применяются при очень малом расходе газа, обычно в измерительных приборах. Газовые турбины бывают одно-, двух- и многоступенчатые.

Количество ступеней определяется многими факторами: назначением турбины, ее конструктивной схемой, общей мощностью и развиваемой одной ступенью, а также срабатываемым перепадом давления. По способу использования располагаемого перепада тепла различают турбины со ступенями скорости, у которых в рабочем колесе происходит только поворот потока, без изменения давления (активные турбины), и турбины со ступенями давления, в них давление уменьшается как в сопловых аппаратах, так и на рабочих лопатках (реактивные турбины). В парциальных газовых турбинах подвод газа к рабочему колесу происходит по части окружности соплового аппарата или по его полной окружности.

В многоступенчатой турбине процесс преобразования энергии состоит из целого ряда последовательных процессов в отдельных ступенях. В межлопаточные каналы соплового аппарата подается сжатый и подогретый газ с начальной скоростью, где в процессе расширения происходит преобразование части располагаемого теплоперепада в кинетическую энергию струи вытекания. Дальнейшее расширение газа и преобразование теплоперепада в полезную работу происходят в межлопаточных каналах рабочего колеса. Газовый поток, воздействуя на рабочие лопатки, создает крутящий момент на главном валу турбины. При этом происходит уменьшение абсолютной скорости газа. Чем ниже эта скорость, тем большая часть энергии газа преобразовалась в механическую работу на валу турбины.

КПД характеризует эффективность газовых турбин, представляющую собой отношение работы, снимаемой с вала, к располагаемой энергии газа перед турбиной. Эффективный КПД современных многоступенчатых турбин довольно высок и достигает 92-94%.

Принцип работы газовой турбины состоит в следующем: газ нагнетается в камеру сгорания компрессором , перемешивается с воздухом, формирует топливную смесь и поджигается. Образовавшиеся продукты горения с высокой температурой (900-1200 °С) проходят через несколько рядов лопаток, установленных на валу турбины, и приводят к вращению турбины. Полученная механическая энергия вала передается через редуктор генератору , вырабатывающему электричество.

Тепловая энергия выходящих из турбины газов попадает в теплоутилизатор. Также вместо производства электричества механическая энергия турбины может быть использована для работы различных насосов , компрессоров и т. п. Наиболее часто используемым видом топлива для газовых турбин является природный газ, хотя это не может исключить возможности использования других видов газообразного топлива. Но при этом газовые турбины очень капризны и предъявляют повышенные требования к качеству его подготовки (необходимы определенные механические включения, влажность).

Температура исходящих из турбины газов составляет 450-550 °С. Количественное соотношение тепловой энергии к электрической у газовых турбин составляет от 1,5: 1 до 2,5: 1, что позволяет строить когенерационные системы, различающиеся по типу теплоносителя:

1) непосредственное (прямое) использование отходящих горячих газов;
2) производство пара низкого или среднего давления (8-18 кг/см2) во внешнем котле;
3) производство горячей воды (лучше, когда требуемая температура превышает 140 °С);
4) производство пара высокого давления.

Большой вклад в развитие газовых турбин внесли советские ученые Б. С. Стечкин, Г. С. Жирицкий, Н. Р. Брилинг, В. В. Уваров, К. В. Холщевиков, И. И. Кириллов и др. Значительных успехов в создании газовых турбин для стационарных и передвижных газотурбинных установок достигли зарубежные фирмы (швейцарские «Броун-Бовери», в которой работал известный словацкий ученый А. Стодола, и «Зульцер», американская «Дженерал электрик» и др.).

В дальнейшем развитие газовых турбин зависит от возможности повышения температуры газа перед турбиной. Это связано с созданием новых жаропрочных материалов и надежных систем охлаждения рабочих лопаток при значительном усовершенствовании проточной части и др.

Благодаря повсеместному переходу в 1990-е гг. на использование природного газа в качестве основного топлива для электроэнергетики газовые турбины заняли существенный сегмент рынка. Несмотря на то что максимальная эффективность оборудования достигается на мощностях от 5 МВт и выше (до 300 МВт), некоторые производители выпускают модели в диапазоне 1-5 МВт.

Применяются газовые турбины в авиации и на электростанциях.

  • Предыдущее: ГАЗОАНАЛИЗАТОР
  • Следующее: ГАЗОВЫЙ ДВИГАТЕЛЬ
Категория: Промышленность на Г 


Поделитесь с друзьями или сохраните для себя:

Загрузка...