Автоматизация системы теплоснабжения (индивидуальный тепловой пункт). С применением современного оборудования автоматизации Эффективность АСУ ТП системы теплоснабжения

Компания Siemens является признанным мировым лидером в разработке систем для энергетики, в том числе для систем тепло- и водоснабжения. Именно этим занимается один из Департаментов Siemens - Building Technologies – «Автоматизация и безопасность зданий». Компания предлагает полный спектр оборудования и алгоритмов для автоматизации котельных, тепловых пунктов и насосных станций.

1. Структура системы теплоснабжения

Компания Siemens предлагает комплексное решение для создания единой системы управления городскими системами тепло- и водоснабжения. Комплексность подхода состоит в том, что заказчикам предлагается все, начиная с выполнения гидравлических расчетов систем тепло- и водоснабжения и заканчивая системами коммуникации и диспетчеризации. Реализацию такого подхода обеспечивает накопленный опыт специалистов компании, приобретенный в разных странах мира в ходе выполнения разнообразных проектов в области систем теплоснабжения крупных городов Центральной и Восточной Европы. В настоящей статье рассмотрены структуры систем теплоснабжения, принципы и алгоритмы управления, которые были реализованы при выполнении этих проектов.

Системы теплоснабжения строятся преимущественно по 3-ступенчатой схеме, частями которой являются:

1. Источники тепла разных типов, соединенные между собой в единую закольцованную систему

2. Центральные тепловые пункты (ЦТП), присоединенные к магистральным тепловым сетям с высокой температурой теплоносителя (130...150°С). В ЦТП температура плавно снижается до максимальной температуры 110 °С, исходя из потребностей ИТП. У малых систем уровень центральных тепловых пунктов может отсутствовать.

3. Индивидуальные тепловые пункты, получающие тепловую энергию от ЦТП и обеспечивающие теплоснабжение объекта.

Принципиальной особенностью решений Siemens является то, что вся система основана на принципе 2-х трубной разводки, которая является лучшим технико-экономическим компромиссом. Такое решение позволяет снизить потери тепла и потребление электроэнергии в сравнении с широко распространенными в России 4-х трубной или 1-но трубной с открытым водоразбором системами, инвестиции в модернизацию которых без изменения их структуры не эффективны. Расходы на обслуживание таких систем постоянно увеличиваются. Между тем, именно экономический эффект является основным критерием целесообразности развития и технического совершенствования системы. Очевидно, что при сооружении новых систем следует принимать апробированные на практике оптимальные решения. Если же речь идет о капитальном ремонте системы теплоснабжения неоптимальной структуры, экономически выгодно переходить к 2-х трубной системе с индивидуальными тепловыми пунктами в каждом доме.

При обеспечении потребителей теплом и горячей водой, управляющая компания несет постоянные расходы, структура которых выглядит следующим образом:

Затраты на выработку тепла для потребления;

потери в источниках тепла вследствие несовершенства способов выработки тепла;

потери тепла в тепловых магистралях;

р асходы на электроэнергию.

Каждая из этих составляющих может быть снижена при оптимальном управлении и применении современных средств автоматизации на каждом уровне.

2. Источники тепла

Известно, что для систем теплоснабжения предпочтительными являются большие источники комбинированной выработки тепла и электроэнергии или такие источники, в которых тепло является вторичным продуктом, например, продуктом промышленных процессов. Именно на основе таких принципов возникла идея центрального теплоснабжения. В качестве резервных источников тепла используются котельные, работающие на разных видах топлива, газовые турбины и прочее. Если газовые котельные служат основным источником тепла, они должны работать с автоматической оптимизацией процесса горения. Только так можно получить экономию и снизить выбросы по сравнению с распределенной выработкой тепла в каждом доме.

3. Насосные станции

Тепло из источников тепла передается в магистральные тепловые сети. Теплоноситель перекачивается сетевыми насосами, которые работают непрерывно. Поэтому подбору и способу эксплуатации насосов должно уделяться особое внимание. Режим работы насоса зависит от режимов тепловых пунктов. Снижение расхода на ЦТП влечет за собой нежелательное увеличение напора насоса (насосов). Увеличение напора отрицательно воздействует на все компоненты системы. В лучшем случае увеличивается только гидравлический шум. В любом случае теряется электрическая энергия. В этих условиях безусловный экономический эффект обеспечивается при частотном управлении насосами. Используются различные алгоритмы управления. В базовой схеме контроллер поддерживает постоянный перепад давления на насосе путем изменения частоты вращения. В связи с тем, что с уменьшением расхода теплоносителя снижаются потери давления в трассах (квадратичная зависимость), можно снизить также заданное значение (уставку) перепада давления. Такое управление насосами называется пропорциональным и позволяет дополнительно снизить затраты на работу насоса. Более эффективно управление насосами с коррекцией задания по “удаленной точке”. В этом случае измеряется перепад давления в конечных точках магистральных сетей. Текущие значения перепада давления компенсируют давления на насосной станции.

4. Центральные тепловые пункты (ЦТП)

В современных системах теплоснабжения ЦТП играют очень важную роль. Энергосберегающая система теплоснабжения должна работать с применением индивидуальных тепловых пунктов. Однако это не значит, что ЦТП будут закрываться: они выполняют функцию гидравлического стабилизатора и одновременно разделяют систему теплоснабжения на отдельные подсистемы. Из ЦТП в случае применения ИТП исключаются системы центрального горячего водоснабжения. При этом через ЦТП проходят только 2 трубы, разделенные теплообменником, который отделяет систему магистральных трасс от системы ИТП. Таким образом, система ИТП может работать с другими температурами теплоносителя, а также с меньшими динамическими давлениями. Это гарантирует стабильную работу ИТП и одновременно влечет за собой сокращение инвестиций на ИТП. Температура подачи из ЦТП корректируется в соответствии с температурным графиком по температуре наружного воздуха с учетом летнего ограничения, которое зависит от потребности системы ГВС в ИТП. Речь идет о предварительной корректировке параметров теплоносителя, что позволяет снизить потери тепла во вторичных трассах, а также увеличить срок службы компонентов тепловой автоматики в ИТП.

5. Индивидуальные тепловые пункты (ИТП)

Работа ИТП влияет на экономичность всей системы теплоснабжения. ИТП – стратегически важная часть системы теплоснабжения. Переход от 4-х трубной системы к современной 2-х трубной сопряжен с определенными трудностями. Во-первых, это влечет за собой необходимость инвестиций, во-вторых, без наличия определенного “ноу-хау” внедрение ИТП может наоборот увеличить текущие расходы управляющей компании. Принцип работы ИТП заключается в том, что тепловой пункт находится непосредственно в здании, которое отапливается и для которого готовится горячая вода. При этом к зданию подключено только 3 трубы: 2 для теплоносителя и 1 для холодного водоснабжения. Таким образом, упрощается структура трубопроводов системы, и при плановом ремонте трасс сразу имеет место экономия на прокладке труб.

5.1. Управление контуром отопления

Контроллер ИТП управляет тепловой мощностью системы отопления, изменяя температуру теплоносителя. Уставка температуры отопления определяется по температуре наружного воздуха и кривой отопления (погодозависимое управление). Кривая отопления определяется с учетом инерционности здания.

5.2. Инерционность здания

Инерционность зданий оказывает значительное влияние на результат погодозависимого управления отоплением. Современный контроллер ИТП должен учитывать этот влияющий фактор. Инерционность здания определяется значением постоянной времени здания, которое находится в диапазоне от 10 часов у панельных домов до 35 часов у кирпичных домов. Контроллер ИТП определяет на основании постоянной времени здания так называемую "комбинированную" температуру наружного воздуха, которая и используется в качестве корректирующего сигнала в автоматической системе регулирования температуры воды на отопление.

5.3. Сила ветра

Ветер существенно влияет на температуру помещения особенно в высотных зданиях, расположенных на открытых территориях. Алгоритм коррекции температуры воды на отопление, учитывающий влияние ветра, обеспечивает до 10% экономии тепловой энергии.

5.4 Ограничение температуры обратной воды

Все описанные выше виды управления косвенно влияют на снижение температуры обратной воды. Эта температура является главным показателем экономичной работы системы теплоснабжения. При различных режимах работы ИТП температура обратной воды может быть снижена при помощи функций ограничения. Однако все функции ограничения влекут за собой отклонения от комфортных условий, и их применение должно иметь технико-экономическое обоснование. В независимых схемах подключения контура отопления при экономичной работе теплообменника разность температур обратной воды первичного контура и контура отопления не должна превышать 5°С. Экономичность обеспечивается функцией динамического ограничения температуры обратной воды (DRT – differential of return temperature ): при превышении заданного значения разности температур обратной воды первичного контура и контура отопления контроллер снижает расход теплоносителя в первичном контуре. При этом снижается и пиковая нагрузка (рис. 1).

Особенностями теплоснабжения являются жесткое взаимовлияние режимов теплоснабжения и теплопотребления, а также множественность точек поставки нескольких товаров (тепловая энергия, мощность, теплоноситель, горячая вода). Цель теплоснабжения, не обеспечение генерации и транспорта, а поддержание качества названных товаров для каждого потребителя.

Эта цель достигалась относительно эффективно при стабильных расходах теплоносителя во всех элементах системы. Применяемое у нас “качественное” регулирование по самой своей сути подразумевает изменение только температуры теплоносителя. Появление зданий с регулируемым потреблением обеспечило непредсказуемость гидравлических режимов в сетях при сохранении постоянства расходов в самих зданиях. Жалобы в соседних домах пришлось ликвидировать завышенной циркуляцией и соответствующими массовыми перетопами.

Применяемые сегодня гидравлические расчетные модели, не смотря на их периодическую калибровку, не могут обеспечить учет отклонений расходов на вводах зданий из-за изменения внутренних тепловыделений и потребления горячей воды, а также влияния солнца, ветра и дождя. При фактическом качественно-количественном регулировании, необходимо “видеть” систему в реальном времени и обеспечить:

  • контроль максимального количества точек поставки;
  • сведение текущих балансов отпуска, потерь и потребления;
  • управляющее воздействие при недопустимом нарушении режимов.

Управление должно быть максимально автоматизированным, иначе его просто невозможно реализовать. Задача состояла в том, чтобы добиться этого без чрезмерных затрат на оборудование контрольных точек.

Сегодня, когда в большом количестве зданий имеются измерительные системы с расходомерами, датчиками температуры и давления, использовать их только для финансовых расчетов неразумно. АСУ «Тепло» построена, в основном, на обобщении и анализе информации «от потребителя».

При создании АСУ были преодолены типовые проблемы устаревших систем:

  • зависимость от корректности вычислений приборов учета и достоверности данных в неповеряемых архивах;
  • невозможность сведения оперативных балансов из-за нестыковок времени измерений;
  • невозможность контроля быстроменяющихся процессов;
  • несоответствие новым требованиям информационной безопасности федерального закона «О безопасности критической информационной инфраструктуры Российской Федерации».

Эффекты от внедрения системы:

Службы по работе с потребителями:

  • определение реальных балансов по всем видам товаров и коммерческих потерь:
  • определение возможных забалансовых доходов;
  • контроль фактического потребления мощности и соответствия ее ТУ на подключение;
  • введение ограничений соответствующих уровню платежей;
  • переход на двухставочный тариф;
  • контроль КПЭ для всех служб, работающих с потребителями, и оценка качества их работы.

Эксплуатация:

  • определение технологических потерь и балансов в тепловых сетях;
  • диспетчерское и аварийное управление по фактическим режимам;
  • поддержание оптимальных температурных графиков;
  • контроль состояния сетей;
  • наладка режимов теплоснабжения;
  • контроль отключений и нарушений режимов.

Развитие и инвестиции:

  • достоверная оценка результатов внедрения проектов улучшений;
  • оценка эффектов инвестиционных затрат;
  • разработка схем теплоснабжения в реальных электронных моделях;
  • оптимизация диаметров и конфигурации сети;
  • снижение затрат на подключение при учете реальных резервов пропускной способности и энергосбережения у потребителей;
  • планирование ремонтов
  • организация совместной работы ТЭЦ и котельных.

1. Распределение тепловой нагрузки потребителей тепловой энергии в системе теплоснабжения между источниками тепловой энергии, поставляющими тепловую энергию в данной системе теплоснабжения, осуществляется органом, уполномоченным в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения, путем внесения ежегодно изменений в схему теплоснабжения.

2. Для распределения тепловой нагрузки потребителей тепловой энергии все теплоснабжающие организации, владеющие источниками тепловой энергии в данной системе теплоснабжения, обязаны представить в орган, уполномоченный в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения, заявку, содержащую сведения:

1) о количестве тепловой энергии, которую теплоснабжающая организация обязуется поставлять потребителям и теплоснабжающим организациям в данной системе теплоснабжения;

2) об объеме мощности источников тепловой энергии, которую теплоснабжающая организация обязуется поддерживать;

3) о действующих тарифах в сфере теплоснабжения и прогнозных удельных переменных расходах на производство тепловой энергии, теплоносителя и поддержание мощности.

3. В схеме теплоснабжения должны быть определены условия, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения. При наличии таких условий распределение тепловой нагрузки между источниками тепловой энергии осуществляется на конкурсной основе в соответствии с критерием минимальных удельных переменных расходов на производство тепловой энергии источниками тепловой энергии, определяемыми в порядке, установленном основами ценообразования в сфере теплоснабжения, утвержденными Правительством Российской Федерации, на основании заявок организаций, владеющих источниками тепловой энергии, и нормативов, учитываемых при регулировании тарифов в области теплоснабжения на соответствующий период регулирования.

4. Если теплоснабжающая организация не согласна с распределением тепловой нагрузки, осуществленным в схеме теплоснабжения, она вправе обжаловать решение о таком распределении, принятое органом, уполномоченным в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения, в уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти.

5. Теплоснабжающие организации и теплосетевые организации, осуществляющие свою деятельность в одной системе теплоснабжения, ежегодно до начала отопительного периода обязаны заключать между собой соглашение об управлении системой теплоснабжения в соответствии с правилами организации теплоснабжения, утвержденными Правительством Российской Федерации.

6. Предметом указанного в части 5 настоящей статьи соглашения является порядок взаимных действий по обеспечению функционирования системы теплоснабжения в соответствии с требованиями настоящего Федерального закона. Обязательными условиями указанного соглашения являются:

1) определение соподчиненности диспетчерских служб теплоснабжающих организаций и теплосетевых организаций, порядок их взаимодействия;

2) порядок организации наладки тепловых сетей и регулирования работы системы теплоснабжения;

3) порядок обеспечения доступа сторон соглашения или, по взаимной договоренности сторон соглашения, другой организации к тепловым сетям для осуществления наладки тепловых сетей и регулирования работы системы теплоснабжения;

4) порядок взаимодействия теплоснабжающих организаций и теплосетевых организаций в чрезвычайных ситуациях и аварийных ситуациях.

7. В случае, если теплоснабжающие организации и теплосетевые организации не заключили указанное в настоящей статье соглашение, порядок управления системой теплоснабжения определяется соглашением, заключенным на предыдущий отопительный период, а если такое соглашение не заключалось ранее, указанный порядок устанавливается органом, уполномоченным в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения.

Статья 18. Распределение тепловой нагрузки и управление системами теплоснабжения

1. Распределение тепловой нагрузки потребителей тепловой энергии в системе теплоснабжения между , поставляющими тепловую энергию в данной системе теплоснабжения, осуществляется органом, уполномоченным в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения , путем внесения ежегодно изменений в схему теплоснабжения.

2. Для распределения тепловой нагрузки потребителей тепловой энергии все теплоснабжающие организации, владеющие источниками тепловой энергии в данной системе теплоснабжения, обязаны представить в орган, уполномоченный в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения, заявку, содержащую сведения:

1) о количестве тепловой энергии, которую теплоснабжающая организация обязуется поставлять потребителям и теплоснабжающим организациям в данной системе теплоснабжения;

2) об объеме мощности источников тепловой энергии, которую теплоснабжающая организация обязуется поддерживать;

3) о действующих тарифах в сфере теплоснабжения и прогнозных удельных переменных расходах на производство тепловой энергии, теплоносителя и поддержание мощности.

3. В схеме теплоснабжения должны быть определены условия, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения . При наличии таких условий распределение тепловой нагрузки между источниками тепловой энергии осуществляется на конкурсной основе в соответствии с критерием минимальных удельных переменных расходов на производство тепловой энергии источниками тепловой энергии, определяемыми в порядке, установленном основами ценообразования в сфере теплоснабжения, утвержденными Правительством Российской Федерации, на основании заявок организаций, владеющих источниками тепловой энергии, и нормативов, учитываемых при регулировании тарифов в области теплоснабжения на соответствующий период регулирования.

4. Если теплоснабжающая организация не согласна с распределением тепловой нагрузки, осуществленным в схеме теплоснабжения, она вправе обжаловать решение о таком распределении, принятое органом, уполномоченным в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения, в уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти.

5. Теплоснабжающие организации и теплосетевые организации, осуществляющие свою деятельность в одной системе теплоснабжения, ежегодно до начала отопительного периода обязаны заключать между собой соглашение об управлении системой теплоснабжения в соответствии с правилами организации теплоснабжения, утвержденными Правительством Российской Федерации.

6. Предметом указанного в части 5 настоящей статьи соглашения является порядок взаимных действий по обеспечению функционирования системы теплоснабжения в соответствии с требованиями настоящего Федерального закона. Обязательными условиями указанного соглашения являются:

1) определение соподчиненности диспетчерских служб теплоснабжающих организаций и теплосетевых организаций, порядок их взаимодействия;

3) порядок обеспечения доступа сторон соглашения или, по взаимной договоренности сторон соглашения, другой организации к тепловым сетям для осуществления наладки тепловых сетей и регулирования работы системы теплоснабжения;

4) порядок взаимодействия теплоснабжающих организаций и теплосетевых организаций в чрезвычайных ситуациях и аварийных ситуациях.

7. В случае, если теплоснабжающие организации и теплосетевые организации не заключили указанное в настоящей статье соглашение, порядок управления системой теплоснабжения определяется соглашением, заключенным на предыдущий отопительный период, а если такое соглашение не заключалось ранее, указанный порядок устанавливается органом, уполномоченным в соответствии с настоящим Федеральным законом на утверждение схемы теплоснабжения.

Modernization and Automation of Heat Supply System Minsk experiencce

V.A. Sednin, Scientific Consultant, Doctor of Engineering, Professor,
A.A. Gutkovskiy, Chief Engineer, Belorussian National Technicl University, Scientific Research and Innovations Center of Automated Control Systems in heat power industry

Keywords : heat supply system, automated control systems, reliability and quality improvement, heat delivery regulation, data archiving

Heat supply of large cities in Belorussia, as in Russia, is provided by cogeneration and district heat supply systems (hereinafter - DHSS), where facilities are combined into a single system. However, often the decisions made on individual elements of complex heat supply systems do not meet the systematic criteria, reliability, controllability and environment protection requirements. Therefore modernization of the heat supply systems and creation of automated process control systems is the most relevant task.

Описание:

В. А. Седнин, А.А. Гутковский

Теплоснабжение крупных городов Белоруссии, как и в России, обеспечивается системами теплофикации и централизованного теплоснабжения (далее - СЦТ), объекты которых увязаны в единую схему. Однако часто решения, принимаемые по отдельным элементам сложных систем теплоснабжения, не удовлетворяют системным критериям, требованиям надежности, управляемости и экологичности. Поэтому модернизация систем теплоснабжения и создание автоматизированных систем управления технологическими процессами является наиболее актуальной задачей.

В. А. Седнин , научный консультант, доктор техн. наук, профессор

А. А. Гутковский , главный инженер, Белорусский национальный технический университет, Научно-исследовательский и инновационный центр автоматизированных систем управления в теплоэнергетике и промышленности

Теплоснабжение крупных городов Беларуси, как и в России, обеспечивается системами теплофикации и централизованного теплоснабжения (далее – СЦТ), объекты которых увязаны в единую схему. Однако часто решения, принимаемые по отдельным элементам сложных систем теплоснабжения, не удовлетворяют системным критериям, требованиям надежности, управляемости и экологичности. Поэтому модернизация систем теплоснабжения и создание автоматизированных систем управления технологическими процессами является наиболее актуальной задачей.

Особенности систем централизованного теплоснабжения

Рассматривая основные особенности СЦТ Беларуси, можно отметить , что они характеризуются:

  • непрерывностью и инерционностью своего развития;
  • территориальной распределенностью, иерархичностью, разнообразием используемых технических средств;
  • динамичностью процессов производства и стохастичностью потребления энергии;
  • неполнотой и низкой степенью достоверности информации о параметрах и режимах их функционирования.

Важно отметить, что в СЦТ тепловые сети, в отличие от других трубопроводных систем, служат для транспорта не продукта, а энергии теплоносителя, параметры которого должны удовлетворять требованиям различных потребительских систем.

Указанные особенности подчеркивают существенную необходимость создания автоматизированных систем управления технологическими процессами (далее – АСУ ТП), внедрение которых позволяет повысить энергетическую и экологическую эффективность, надежность и качество функционирования систем теплоснабжения. Внедрение АСУ ТП сегодня не является данью моде, а вытекает из основных законов развития техники и экономически обосновано на современном этапе развития техносферы.

СПРАВКА

Система централизованного теплоснабжения Минска представляет собой структурно сложный комплекс. В него в части производства и транспорта тепловой энергии входят объекты РУП «Минскэнерго» (Минских тепловых сетей, теплофикационные комплексы ТЭЦ-3 и ТЭЦ-4) и объекты УП «Минсккоммунтеплосеть» – котельные, тепловые сети и центральные тепловые пункты.

Создание АСУ ТП УП «Минсккоммунтеплосеть» было начато в 1999 году, и в настоящее время она функционирует, охватывая практические все теплоисточники (свыше 20) и ряд районов тепловых сетей. Разработка проекта АСУ ТП Минских тепловых сетей была начата в 2010 году, реализация проекта началась в 2012 году и в настоящее время продолжается.

Разработка АСУ ТП системы теплоснабжения Минска

На примере Минска представляем основные подходы, которые были реализованы в ряде городов Беларуси и России при проектировании и разработке АСУ ТП систем теплоснабжения.

С учетом обширность вопросов, охватывающих предметную область теплоснабжения, и накопленного опыта в сфере автоматизации систем теплоснабжения на предпроектной стадии создания АСУ ТП Минских тепловых сетей была разработана концепция. Концепция определяет принципиальные основы организации АСУ ТП теплоснабжения Минска (см. справку) как процесса создания вычислительной сети (системы), ориентированной на автоматизацию технологических процессов топологически распределенного предприятия централизованного теплоснабжения.

Технологические информационные задачи АСУ ТП

Внедряемая автоматизированная система управления в первую очередь предусматривает повышение надежности и качества оперативного управления режимами функционирования отдельных элементов и системы теплоснабжения в целом . Поэтому данная АСУ ТП предназначена для решения следующих технологических информационных задач:

  • обеспечение централизованного функционально-группового управления гидравлическими режимами теплоисточников, магистральных тепловых сетей и перекачивающих насосных станций с учетом суточных и сезонных изменений расходов циркуляции с корректировкой (обратной связью) по фактическим гидравлическим режимам в распределительных тепловых сетях города;
  • реализация метода динамического центрального регулирования отпуска тепловой энергии с оптимизацией температур теплоносителя в подающих и обратных трубопроводах тепломагистралей;
  • обеспечение сбора и архивации данных о тепловых и гидравлических режимах работы теплоисточников, магистральных тепловых сетей, перекачивающей насосной станции и распределительных тепловых сетей города для осуществления контроля, оперативного управления и анализа функционирования СЦТ Минских тепловых сетей;
  • создание эффективной системы защиты оборудования теплоисточников и тепловых сетей в нештатных ситуациях;
  • создание информационной базы для решения оптимизационных задач, возникающих в ходе эксплуатации и модернизации объектов системы теплоснабжения Минска.

СПРАВКА 1

В состав Минских тепловых сетей входят 8 сетевых районов (РТС), 1 ТЭЦ, 9 котельных мощностью от нескольких сот до тысячи мегаватт. Кроме того, на обслуживании Минских тепловых сетей находятся 12 понизительных насосных станций, 209 ЦТП.

Организационно-производственная структура Минских тепловых сетей по схеме «снизу вверх»:

  • первый (нижний) уровень – объекты тепловых сетей, включая ЦТП, ИТП, тепловые камеры и павильоны;
  • второй уровень – мастерские участки тепловых районов;
  • третий уровень – теплоисточники, включающие в свой состав районные котельные (Кедышко, Степняка, Шабаны), пиковые котельные (Орловская, Комсомолка, Харьковская, Масюковщина, Курасовщина, Западная) и насосные станции;
  • четвертый (верхний) уровень – диспетчерская служба предприятия.

Структура АСУ ТП Минских тепловых сетей

В соответствии с производственно-организационной структурой Минских тепловых сетей (см. справку 1) выбрана четырехуровневая структура АСУ ТП Минских тепловых сетей:

  • первый (верхний) уровень – центральная диспетчерская предприятия;
  • второй уровень – операторские станции районов тепловых сетей;
  • третий уровень – операторские станции теплоисточников (операторские станции мастерских участков тепловых сетей);
  • четвертый (нижний) уровень – станции автоматического управления установками (котлоагрегаты) и процессами транспорта и распределения тепловой энергии (технологическая схема теплоисточника, тепловые пункты, тепловые сети и т. п.).

Развитие (создание АСУ ТП теплоснабжения всего города Минска) предполагает включение в систему на втором структурном уровне операторских станций теплофикационных комплексов минских ТЭЦ-2, ТЭЦ-3, ТЭЦ-4 и операторской станции (центральной диспетчерской) УП «Минск­коммунтеплосеть». Все уровни управления планируется объединить в единую вычислительную сеть.

Архитектура АСУ ТП системы теплоснабжения Минска

Анализ объекта управления в целом и состояние его отдельных элементов, а также перспективы развития системы управления позволили предложить архитектуру распределенной автоматизированной системы управления технологическими процессами системы теплоснабжения Минска в рамках объектов РУП «Минскэнерго». Корпоративная сеть интегрирует вычислительные ресурсы центрального офиса и удаленных структурных подразделений, в том числе и станции автоматического управления (САУ) объектов сетевых районов. Все САУ (ЦТП, ИТП, ПНС) и сканирующие станции подключаются непосредственно к операторским станциям соответствующих сетевых районов, устанавливаемым предположительно на мастерских участках.

На удаленном структурном подразделении (например, РТС-6) устанавливаются следующие станции (рис. 1): операторская станция «РТС-6» (ОпС РТС-6) – она является центром управления сетевого района и устанавливается на мастерском участке РТС-6. Для оперативного персонала ОпС РТС-6 обеспечивает доступ ко всем без исключения информационным и управляющим ресурсам САУ всех типов, а также доступ к разрешенным информационным ресурсам центрального офиса. ОпС РТС-6 обеспечивают регулярное сканирование всех подчиненных станций управления.

Собранная со всех ЦТП оперативная и коммерческая информация направляется для хранения на выделенный сервер базы данных (устанавливается в непосредственной близости от ОпС РТС-6).

Таким образом, с учетом масштабов и топологии объекта управления и сложившейся организационно-производственной структуры предприятия АСУ ТП Минских тепловых сетей строится по многозвенной схеме с применением иерархической структуры программно-технических средств и вычислительных сетей, решающих различные задачи управления на каждом уровне.

Уровни системы управления

На нижнем уровне система управления выполняет:

  • предварительную обработку и передачу информации;
  • регулирование основных технологических параметров, функции оптимизации управления, защиты технологического оборудования.

К техническим средствам нижнего уровня предъявляются повышенные требования надежности, включая возможность автономного функционирования при потере связи с вычислительной сетью верхнего уровня.

Последующие уровни системы управления строятся согласно иерархии системы теплоснабжения и решают задачи соответствующего уровня, а также обеспечивают операторский интерфейс.

Управляющие устройства, устанавливаемые на объектах, помимо своих прямых обязанностей, должны предусматривать и возможность агрегатирования их в распределенные системы управления. Управляющее устройство должно обеспечивать работоспособность и сохранность информации объективного первичного учета при длительных перерывах связи.

Основными элементами такой схемы являются технологические и операторские станции, соединенные между собой каналами связи. Ядром технологической станции должен являться промышленный компьютер, оснащенный средствами связи с объектом управления и канальными адаптерами для организации межпроцессорной связи. Основное назначение технологической станции – реализация алгоритмов прямого цифрового управления. В технически обоснованных случаях некоторые функции могут выполняться в супервизорном режиме: процессор технологической станции может управлять удаленными интеллектуальными регуляторами или программно-логическими модулями, используя при этом протоколы современных полевых интерфейсов.

Информационный аспект построения АСУ ТП теплоснабжения

Особое внимание при разработке уделялось информационному аспекту построения АСУ ТП теплоснабжения. Полнота описания технологии производства и совершенство алгоритмов преобразования информации являются важнейшей частью информационного обеспечения АСУ ТП, построенного на технологии прямого цифрового управления. Информационные возможности АСУ ТП теплоснабжением обеспечивают возможность решения комплекса инженерных задач, которые классифицируют:

  • по стадиям основной технологии (производство, транспорт и потребление тепловой энергии);
  • по назначению (идентификация, прогнозирование и диагностика, оптимизация и управление).

При создании АСУ ТП Минских тепловых сетей предусматривается формирование информационного поля, позволяющего оперативно решать весь комплекс вышеуказанных задач идентификации, прогнозирования, диагностики, оптимизации и управления. При этом информационно обеспечивается возможность решения системных задач верхнего уровня управления при дальнейшем развитии и расширении АСУ ТП по мере включения соответствующих технических служб обеспечения основного технологического процесса.

В частности, это относится к оптимизационным задачам, т. е. оптимизации производства тепловой и электрической энергии, режимов отпуска тепловой энергии, потокораспределения в тепловых сетях, режимов работы основного технологического оборудования теплоисточников, а также расчета нормирования топливно-энергетических ресурсов, энергоучета и эксплуатации, планирования и прогнозирования развития системы теплоснабжения. На практике решение части задач этого вида проводится в рамках АСУ предприятия. В любом случае они должны учитывать информацию, получаемую в ходе решения непосредственно задач управления технологическим процессом, а создаваемая АСУ ТП информационно должна интегрироваться с другими информационными системами предприятия.

Методология программно-объектного программирования

Построение программного обеспечения системы управления, которое является оригинальной разработкой коллектива центра, базируется на методологии программно-объектного программирования: в памяти управляющих и операторских станций создаются программные объекты, отображающие реальные процессы, агрегаты и измерительные каналы автоматизируемого технологического объекта. Взаимодействие этих программных объектов (процессов, агрегатов и каналов) между собой, а также с оперативным персоналом и с технологическим оборудованием, собственно, и обеспечивает функционирование элементов тепловых сетей по предопределенным правилам или алгоритмам. Таким образом, описание алгоритмов сводится к описанию наиболее существенных свойств этих программных объектов и способов их взаимодействия.

Синтез структуры системы управления технических объектов основан на анализе технологической схемы объекта управления и подробном описании технологии основных процессов и функционирования, присущих данному объекту в целом.

Удобным инструментом для составления подобного типа описания для объектов теплоснабжения является методология математического моделирования на макроуровне. В ходе составления описания технологических процессов составляется математическая модель, выполняется параметрический анализ и определяется перечень регулируемых и контролируемых параметров и регулирующих органов.

Конкретизируются режимные требования технологических процессов, на основании которых определяются границы допустимых диапазонов изменения регулируемых и контролируемых параметров и требования к выбору исполнительных механизмов и регулирующих органов. На основании обобщенной информации производится синтез автоматизированной системы управления объектом, которая при применении метода прямого цифрового управления строится по иерархическому принципу в соответствии с иерархией объекта управления.

АСУ районной котельной

Так, для районной котельной (рис. 2) автоматизированная система управления строится на базе двух классов.

Верхний уровень – операторская станция «Котельная» (ОпС «Котельная») – основная станция, которая координирует и контролирует подчиненные станции. ОпС «Котельная резервная» – станция горячего резерва, которая находится постоянно в режиме прослушивания и регистрации трафика основной ОпС и ее подчиненных САУ. Ее база данных содержит актуальные параметры и полные ретроспективные данные о функционировании рабочей системы управления. В любой момент времени резервная станция может быть назначена основной с полной передачей ей трафика и разрешением функций супервизорного управления.

Нижний уровень – комплекс объединенных совместно с операторской станцией в вычислительную сеть станций автоматического управления:

  • САУ «Котлоагрегат» обеспечивает управление котлоагрегатом. Как правило, она не резервируется, т. к. резервирование тепловой мощности котельной производится на уровне котлоагрегатов.
  • САУ «Сетевая группа» отвечает за теплогидравлический режим функционирования котельной (управление группой сетевых насосов, линией байпаса на выходе котельной, линией перепуска, входными и выходными задвижками котлов, индивидуальными насосами рециркуляции котлов и пр.).
  • САУ «Водоподготовка» обеспечивает управление всем вспомогательным оборудованием котельной, необходимым для подпитки сети.

Для более простых объектов системы теплоснабжения, например тепловых пунктов и блочных котельных, система управления строится как одноуровневая на базе станции автоматического управления (САУ ЦТП, САУ БМК). В соответствии со структурой тепловых сетей станции управления тепловыми пунктами объединяются в локальную вычислительную сеть района тепловых сетей и замыкаются на операторскую станцию района тепловых сетей, которая, в свою очередь, имеет информационную связь с операторской станцией более высокого уровня интеграции.

Операторские станции

Программное обеспечение операторской станции обеспечивает дружественный интерфейс для оперативного персонала, управляющего работой автоматизированного технологического комплекса. Операторские станции имеют развитые средства оперативного диспетчерского управления, а также устройства массовой памяти для организации краткосрочных и долговременных архивов состояния параметров технологического объекта управления и действий оперативного персонала.

В случаях больших информационных потоков, замыкаемых на оперативном персонале, целесообразно организовать несколько операторских станций с выделением отдельного сервера базы данных и, возможно, коммуникационного сервера.

Операторская станция, как правило, сама непосредственно не воздействует на объект управления – она получает информацию от технологических станций и им же передает директивы оперативного персонала или задания (уставки) супервизорного управления, формируемые автоматически или полуавтоматически. Она образует рабочее место оператора сложного объекта, например котельной.

Создаваемая система автоматизированного управления предусматривает построение интеллектуальной надстройки, которая должна не только отслеживать возмущения, возникающие в системе, и реагировать на них, но и прогнозировать возникновение нештатных ситуаций и блокировать их возникновение. При изменении топологии сети теплоснабжения и динамики ее процессов предусмотрена возможность адекватного изменения структуры распределенной системы управления за счет добавления новых станций управления и (или) изменения программных объектов без изменения конфигурации оборудования существующих станций.

Эффективность АСУ ТП системы теплоснабжения

Анализ опыта эксплуатации АСУ ТП предприятий теплоснабжения 1 в ряде городов Беларуси и России, проводимый в течение последних двадцати лет, показал их экономическую эффективность и подтвердил жизнеспособность принятых решений по архитектуре, программному и техническому обеспечению.

По своим свойствам и характеристикам данные системы отвечают требованиям идеологии умных сетей. Тем не менее постоянно ведутся работы по совершенствованию и развитию разрабатываемых автоматизированных систем управления. Внедрение АСУ ТП теплоснабжения повышает надежность и экономичность работы СЦТ. Основная экономия ТЭР определяется оптимизацией теплогидравлических режимов тепловых сетей, режимов работы основного и вспомогательного оборудования теплоисточников, насосных станций и тепловых пунктов.

Литература

  1. Громов Н. К. Городские теплофикационные системы. М. : Энергия, 1974. 256 с.
  2. Попырин Л. С. Исследования систем теплоснабжения. М. : Наука, 1989. 215 с.
  3. Ионин А. А. Надежность систем тепловых сетей. М. : Строй­издат, 1989. 302 с.
  4. Монахов Г. В. Моделирование управления режимами тепловых сетей М. : Энергоатомиздат, 1995. 224 с.
  5. Седнин В. А. Теория и практика создания автоматизированных систем управления теплоснабжением. Минск: БНТУ, 2005. 192 с.
  6. Седнин В. А. Внедрение АСУ ТП как основополагающий фактор повышения надежности и эффективности систем теплоснабжения // Технология, оборудование, качество. Сб. матер. Белорусского промышленного форума 2007, Минск, 15–18 мая 2007 г. / Экспофорум – Минск, 2007. С. 121–122.
  7. Седнин В. А. Оптимизация параметров температурного графика отпуска теплоты в теплофикационных системах // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2009. № 4. С. 55–61.
  8. Седнин В. А. Концепция создания автоматизированной системы управления технологическими процессами Минских тепловых сетей / В. А. Седнин , А. В. Седнин, Е. О. Воронов // Повышение эффективности энергетического оборудования: Материалы научно-практической конференции, в 2-х т. Т. 2. 2012. С. 481–500.

1 Созданных коллективом Научно-исследовательского и инновационного центра автоматизированных систем управления в теплоэнергетике и промышленности Белорусского национального технического университета.

Поделитесь с друзьями или сохраните для себя:

Загрузка...